Andrei A Gismatulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702126/publications.pdf

Version: 2024-02-01

840776 888059 32 313 11 17 citations h-index g-index papers 32 32 32 320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Charge Transport Mechanism in a PECVD Deposited Low-k SiOCH Dielectric. Journal of Electronic Materials, 2022, 51, 2521-2527.	2.2	1
2	Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Chaos, Solitons and Fractals, 2021, 142, 110458.	5.1	6
3	Charge Transport Mechanism and Trap Origin in Methylâ€Terminated Organosilicate Glass Lowâ€Îº Dielectrics. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000654.	1.8	2
4	Charge Transport Mechanism in Atomic Layer Deposited Oxygenâ€Deficient TaO x Films. Physica Status Solidi (B): Basic Research, 2021, 258, 2000432.	1.5	4
5	Charge transport mechanism in the forming-free memristor based on silicon nitride. Scientific Reports, 2021, 11, 2417.	3.3	21
6	Bipolar conductivity in ferroelectric La:HfZrO films. Applied Physics Letters, 2021, 118, .	3.3	5
7	Memory Properties of SiOx- and SiNx-Based Memristors. Nanobiotechnology Reports, 2021, 16, 722-731.	0.6	2
8	Charge Transport Mechanism in a Formless Memristor Based on Silicon Nitride. Russian Microelectronics, 2020, 49, 372-377.	0.5	5
9	Silicon Nanocrystals and Amorphous Nanoclusters in SiOx and SiNx: Atomic, Electronic Structure, and Memristor Effects., 2020,,.		1
	5'		
10	Charge transport mechanism in La:HfO2. Applied Physics Letters, 2020, 117, .	3.3	11
10	Charge transport mechanism in La:HfO2. Applied Physics Letters, 2020, 117, . Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103.	3.3	15
	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters.		
11	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure.	3.1	15
11 12	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Applied Physics Letters, 2020, 116, . Critical properties and charge transport in ethylene bridged organosilica low-κ dielectrics. Journal of	3.1	15 24
11 12 13	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Applied Physics Letters, 2020, 116, . Critical properties and charge transport in ethylene bridged organosilica low-β dielectrics. Journal of Applied Physics, 2020, 127, . Electronic structure and charge transport mechanism in a forming-free SiO <i> _x</i>	3.1 3.3 2.5	15 24 12
11 12 13 14	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Applied Physics Letters, 2020, 116, . Critical properties and charge transport in ethylene bridged organosilica low-β dielectrics. Journal of Applied Physics, 2020, 127, . Electronic structure and charge transport mechanism in a forming-free SiO <i> _x √ i>-based memristor. Nanotechnology, 2020, 31, 505704. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited</i>	3.1 3.3 2.5 2.6	15 24 12 12
11 12 13 14	Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics (Switzerland), 2020, 9, 2103. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Applied Physics Letters, 2020, 116, . Critical properties and charge transport in ethylene bridged organosilica low-κ dielectrics. Journal of Applied Physics, 2020, 127, . Electronic structure and charge transport mechanism in a forming-free SiO <i> _x √i>-based memristor. Nanotechnology, 2020, 31, 505704. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Siln₂O₃Er films Materials Research Express, 2020, 7, 125903. Charge transport mechanism in periodic mesoporous organosilica low-k dielectric. Applied Physics</i>	3.1 3.3 2.5 2.6	15 24 12 12 4

#	Article	IF	CITATIONS
19	Memristor effect in GeO[SiO2] and GeO[SiO] solid alloys films. Applied Physics Letters, 2019, 114, .	3.3	26
20	All Nonmetal Resistive Random Access Memory. Scientific Reports, 2019, 9, 6144.	3.3	24
21	Mechanism of stress induced leakage current in Si3N4. Materials Research Express, 2019, 6, 076401.	1.6	1
22	Charge transport mechanism in SiNx-based memristor. Applied Physics Letters, 2019, 115, 253502.	3.3	21
23	Multiphonon trap ionization transport in nonstoichiometric SiN x. Materials Research Express, 2019, 6, 036304.	1.6	3
24	Swift heavy ion stimulated formation of the Si quantum dots in Si/SiO2 multilayer heterostructures. , 2019, , .		3
25	Electronic structure and charge transport in nonstoichiometric tantalum oxide. Nanotechnology, 2018, 29, 264001.	2.6	16
26	Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3769-3775.	8.0	45
27	Electrophysical properties of Si/SiO2 nanostructures fabricated by direct bonding. Technical Physics Letters, 2016, 42, 590-593.	0.7	3
28	Formation of Si nanocrystals in SiOx, SiOx:C:H films and Si/SiO2multilayer nano-heterostructures by pulse laser treatments. , 2014, , .		1
29	Laser pulse crystallization and optical properties of Si/SiO ₂ and Si/Si ₃ N ₄ multilayer nano-heterostructures. Proceedings of SPIE, 2013, , .	0.8	1
30	Nanoscale Si/SiO $<$ inf $>$ 2 $<$ /inf $>$ double-barrier structures produced by plasma-chemical technology. , 2010, , .		0
31	The electrical properties of MOS-structures with silicon nanoballs incrusted in SiO <inf>2</inf> layer. , 2009, , .		0
32	Nanoscale Si/SiO <inf>2</inf> multilayer structures produced by plasma-chemical technology., 2009,,.		1