Xuefeng Xv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701937/publications.pdf

Version: 2024-02-01

430874 526287 36 848 18 27 h-index citations g-index papers 36 36 36 742 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes. Plant Physiology, 2022, 188, 2166-2181.	4.8	29
2	Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions. Plant Cell, 2022, 34, 1980-2000.	6.6	16
3	MdMADS6 Recruits Histone Deacetylase MdHDA19 to Repress the Expression of the Carotenoid Synthesis-Related Gene MdCCD1 during Fruit Ripening. Plants, 2022, 11, 668.	3.5	7
4	Longâ€distance mobile mRNA <i>CAX3</i> modulates iron uptake and zinc compartmentalization. EMBO Reports, 2022, 23, e53698.	4.5	4
5	Siderophore production in <i>pseudomonas</i> SP. strain <scp>SP3</scp> enhances iron acquisition in apple rootstock. Journal of Applied Microbiology, 2022, , .	3.1	11
6	\hat{I}^3 -Aminobutyric Acid Participates in the Adult-Phase Adventitious Rooting Recalcitrance. Journal of Plant Growth Regulation, 2021, 40, 1981-1991.	5.1	7
7	Group /S1 bZIP heterodimers regulate <i>MdIPT5b</i> to negatively modulate drought tolerance in apple species. Plant Journal, 2021, 107, 399-417.	5.7	24
8	An HDâ€ZIP transcription factor, <i>MxHB13</i> , integrates auxinâ€regulated and juvenilityâ€determined control of adventitious rooting in <i>Malus xiaojinensis</i> . Plant Journal, 2021, 107, 1663-1680.	5.7	16
9	RBP differentiation contributes to selective transmissibility of <i>OPT3</i> mRNAs. Plant Physiology, 2021, 187, 1587-1604.	4.8	5
10	MxRop1-MxrbohD1 interaction mediates ROS signaling in response to iron deficiency in the woody plant Malus xiaojinensis. Plant Science, 2021, 313, 111071.	3.6	6
11	MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock. Journal of Experimental Botany, 2021, 72, 1919-1932.	4.8	24
12	Ethylene Response Factors MbERF4 and MbERF72 Suppress Iron Uptake in Woody Apple Plants by Modulating Rhizosphere pH. Plant and Cell Physiology, 2020, 61, 699-711.	3.1	23
13	Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics, 2020, 21, 852.	2.8	6
14	Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics, 2020, 21, 550.	2.8	17
15	Quantitative trait lociâ€based genomicsâ€assisted prediction for the degree of apple fruit cover color. Plant Genome, 2020, 13, e20047.	2.8	12
16	Application of genome-wide insertion/deletion markers on genetic structure analysis and identity signature of Malus accessions. BMC Plant Biology, 2020, 20, 540.	3.6	7
17	MicroRNA156 (miR156) Negatively Impacts Mg-Protoporphyrin IX (Mg-Proto IX) Biosynthesis and Its Plastid-Nucleus Retrograde Signaling in Apple. Plants, 2020, 9, 653.	3.5	5
18	<i>ERF4</i> affects fruit firmness through TPL4 by reducing ethylene production. Plant Journal, 2020, 103, 937-950.	5.7	51

#	Article	IF	Citations
19	A long nonâ€coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of <i>SAUR32</i> and contributes to the Feâ€deficiency response. Plant Journal, 2020, 103, 53-67.	5.7	42
20	Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant, Cell and Environment, 2019, 42, 424-436.	5.7	32
21	MdGGT1 Impacts Apple miR156 Precursor Levels via Ontogenetic Changes in Subcellular Glutathione Homeostasis. Frontiers in Plant Science, 2019, 10, 994.	3.6	7
22	The Artificial Promoter rMdAG2I Confers Flower-specific Activity in Malus. International Journal of Molecular Sciences, 2019, 20, 4551.	4.1	3
23	Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE, 2019, 14, e0210672.	2.5	34
24	Mapping Gene Markers for Apple Fruit Ring Rot Disease Resistance Using a Multi-omics Approach. G3: Genes, Genomes, Genetics, 2019, 9, 1663-1678.	1.8	27
25	Downregulation of the auxin transporter gene SIPIN8 results in pollen abortion in tomato. Plant Molecular Biology, 2019, 99, 561-573.	3.9	20
26	Genome-Wide Identification and Characterization of ABC Transporters in Nine Rosaceae Species Identifying MdABCG28 as a Possible Cytokinin Transporter linked to Dwarfing. International Journal of Molecular Sciences, 2019, 20, 5783.	4.1	21
27	Natural Variation Underlies Differences in ETHYLENE RESPONSE FACTOR17 Activity in Fruit Peel Degreening. Plant Physiology, 2018, 176, 2292-2304.	4.8	47
28	MdPIN1b encodes a putative auxin efflux carrier and has different expression patterns in BC and M9 apple rootstocks. Plant Molecular Biology, 2018, 96, 353-365.	3.9	21
29	<i>At<scp>ROP</scp>6</i> is involved in reactive oxygen species signaling in response to ironâ€deficiency stress in <i>Arabidopsis thaliana</i> . FEBS Letters, 2018, 592, 3446-3459.	2.8	28
30	Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: <i>MdSAUR37</i> , <i>MdPP2CH</i> and <i>MdALMTII</i> . Plant Journal, 2018, 95, 427-443.	5.7	71
31	Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock. Biochemical and Biophysical Research Communications, 2017, 482, 604-609.	2.1	28
32	Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency. Biochemical and Biophysical Research Communications, 2017, 491, 862-868.	2.1	40
33	High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis. Frontiers in Plant Science, 2017, 8, 1059.	3.6	74
34	The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0186580.	2.5	43
35	Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production. Frontiers in Plant Science, 2016, 7, 1726.	3.6	34
36	MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. Journal of Experimental Botany, 0, , .	4.8	6