

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701696/publications.pdf

Version: 2024-02-01

126858 138417 8,848 62 33 58 h-index citations g-index papers 64 64 64 11081 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1345-1367.	3.8	2,787
2	Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 3207-3215.	7.8	913
3	Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 2007, 67, 2965-2972.	3.8	543
4	Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 2006, 44, 3232-3238.	5.4	524
5	Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 2010, 48, 1824-1834.	5.4	493
6	Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Composites Science and Technology, 2012, 72, 121-144.	3.8	432
7	Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 2008, 46, 1497-1505.	5.4	399
8	Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Applied Materials & Emp; Interfaces, 2009, 1, 1090-1096.	4.0	355
9	Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II). Journal of Hazardous Materials, 2014, 265, 104-114.	6.5	202
10	Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10777.	6.7	190
11	Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon, 2017, 118, 765-771.	5.4	157
12	Magnetic graphene foam for efficient adsorption of oil and organic solvents. Journal of Colloid and Interface Science, 2014, 430, 337-344.	5.0	133
13	Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. Journal of Power Sources, 2010, 195, 4290-4296.	4.0	108
14	Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1412-1420.	3.8	92
15	Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Advances, 2015, 5, 38470-38478.	1.7	91
16	Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renewable and Sustainable Energy Reviews, 2014, 30, 651-660.	8.2	87
17	Cleaning and Functionalization of Polymer Surfaces and Nanoscale Carbon Fillers by UV/Ozone Treatment: A Review. Journal of Composite Materials, 2009, 43, 1537-1564.	1.2	80
18	Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Composites Science and Technology, 2016, 129, 38-45.	3.8	78

#	Article	IF	Citations
19	Surface roughness induced superhydrophobicity of graphene foam for oil-water separation. Journal of Colloid and Interface Science, 2017, 508, 254-262.	5.0	71
20	Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Composites Science and Technology, 2018, 163, 162-170.	3.8	65
21	Development of multi-functional cotton fabrics with Ag/AgBr–TiO2 nanocomposite coating. Composites Science and Technology, 2016, 122, 104-112.	3.8	63
22	Ternary silicone sponge with enhanced mechanical properties for oil–water separation. Polymer Chemistry, 2015, 6, 5869-5875.	1.9	62
23	Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polymer, 2012, 53, 6081-6088.	1.8	60
24	Biomimetic Superoleophobicity of Cotton Fabrics for Efficient Oil–Water Separation. Advanced Materials Interfaces, 2016, 3, 1600128.	1.9	60
25	<l>ln-Situ</l> Amino Functionalization of Carbon Nanotubes Using Ball Milling. Journal of Nanoscience and Nanotechnology, 2009, 9, 749-753.	0.9	58
26	Preparation of cellulose-coated cotton fabric and its application for the separation of emulsified oil in water. Carbohydrate Polymers, 2020, 240, 116318.	5.1	52
27	Factors governing the tensile strength of basalt fibre. Composites Part A: Applied Science and Manufacturing, 2019, 119, 127-133.	3.8	49
28	Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chemical Physics Letters, 2008, 458, 166-169.	1.2	45
29	Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes. Composites Science and Technology, 2011, 71, 1644-1651.	3.8	45
30	Graphene foam with hierarchical structures for the removal of organic pollutants from water. RSC Advances, 2016, 6, 4889-4898.	1.7	39
31	Development of functional glass fibres with nanocomposite coating: A comparative study. Composites Part A: Applied Science and Manufacturing, 2013, 44, 16-22.	3.8	38
32	Three-dimensional titanium dioxide/graphene hybrids with improved performance for photocatalysis and energy storage. Journal of Colloid and Interface Science, 2018, 512, 647-656.	5.0	37
33	Structure control of ultra-large graphene oxide sheets by the Langmuir–Blodgett method. RSC Advances, 2013, 3, 4680.	1.7	36
34	Preparation of fiber-based plasmonic photocatalyst and its photocatalytic performance under the visible light. Applied Catalysis B: Environmental, 2015, 166-167, 287-294.	10.8	33
35	Modification of basalt fibre using pyrolytic carbon coating for sensing applications. Composites Part A: Applied Science and Manufacturing, 2017, 101, 123-128.	3.8	32
36	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30

#	Article	IF	Citations
37	LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure: A high-power cathode material for rechargeable Li-ion batteries. Scripta Materialia, 2011, 64, 122-125.	2.6	29
38	Strain-sensitive Raman spectroscopy and electrical resistance of carbon nanotube-coated glass fibre sensors. Composites Science and Technology, 2012, 72, 1548-1555.	3.8	27
39	Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil-water separation. Composites Communications, 2019, 14, 1-6.	3.3	22
40	Effect of doubly organo-modified vermiculite on the properties of vermiculite/polystyrene nanocomposites. Applied Clay Science, 2013, 75-76, 74-81.	2.6	21
41	Acid and temperature dual-responsive cotton fabrics with polymer coating. Composites Communications, 2017, 4, 10-15.	3.3	20
42	Controlled synthesis of hierarchical TiO ₂ nanoparticles on glass fibres and their photocatalytic performance. Dalton Transactions, 2014, 43, 12743-12753.	1.6	18
43	CVD-Grown CNTs on Basalt Fiber Surfaces for Multifunctional Composite Interphases. Fibers, 2016, 4, 28.	1.8	15
44	Bi-functional composite foam with hierarchical structure for efficient separation of emulsified mixtures consisting of oil and water. Applied Surface Science, 2019, 483, 1149-1157.	3.1	12
45	Composites with AlEgens for Temperature Sensing and Strain Measurement. Macromolecular Chemistry and Physics, 2020, 221, 1900552.	1.1	12
46	Production of Fibres from Lunar Soil: Feasibility, Applicability and Future Perspectives. Advanced Fiber Materials, 2022, 4, 923-937.	7.9	12
47	Correlation of Phase Composition, Structure, and Mechanical Properties of Natural Basalt Continuous Fibers. Natural Resources Research, 2021, 30, 1105-1119.	2.2	11
48	Bio-based oil gelling agent for effective removal of oil spills from the surface of water. Materials Chemistry Frontiers, 2018, 2, 1784-1790.	3.2	10
49	What happens to glass fiber under extreme chemical conditions?. Journal of Non-Crystalline Solids, 2020, 548, 120331.	1.5	7
50	Direct visualization of interfacial debonding in FRP structure using an AIE molecule. Composites Communications, 2021, 27, 100816.	3.3	7
51	Aggregationâ€induced demulsification triggered by the hydrophilic fabric for the separation of highly emulsified oil droplets from water. Aggregate, 2022, 3, e131.	5.2	7
52	Development of CNTs-carbonized cotton fiber/PANI 3D-nanocomposites for flexible energy storage and electromagnetic shielding applications. Electrochimica Acta, 2022, 427, 140847.	2.6	7
53	Supramolecular assembly of leaf-like fluorescent tetraphenylethylene through polymer-directed inter-locking. Composites Communications, 2019, 11, 45-51.	3.3	6
54	In-situ characterization on the fracture behavior of three dimensional polymer nanocomposites reinforced by CNT sponge. Composites Science and Technology, 2022, 217, 109132.	3.8	5

#	Article	IF	CITATIONS
55	Coating Carbon Nanotubes with Silver Nanoparticles to Get Conductive Nanocomposites. , 2006, , .		4
56	Hydrothermal Synthesis of Layered Sodium Manganese Oxide Nanowires and Their Electrochemical Performance. Journal of Nanoscience and Nanotechnology, 2010, 10, 7378-7381.	0.9	4
57	Carbon Nanotubes for Defect Monitoring in Fiber-Reinforced Polymer Composites. , 2017, , 71-99.		4
58	Facile preparation of a polysilsesquioxane sheet with a three-dimensional structure. Materials Chemistry Frontiers, 2021, 5, 7176-7183.	3.2	4
59	Wheat bran/polymer composites as a solidifier to gel oil on water surface. Composites Communications, 2020, 22, 100471.	3.3	3
60	Fluorescence and stimuli-responsive performance of polymer composites filled with tetraphenylethene derivatives. Polymer Chemistry, 2022, 13, 3126-3135.	1.9	2
61	Removal of phosphorus from aqueous solution using multi-wall carbon nanotube (MWCNT) as adsorbent: Kinetics and isotherms. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-7.	1.0	1
62	Glass Fibers with Multi-Functional Capabilities for Engineering and Environmental Applications. Advanced Materials Research, 0, 1024, 155-158.	0.3	0