Luis K Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701433/publications.pdf

Version: 2024-02-01

		13099	12597
152	18,337	68	132
papers	citations	h-index	g-index
155	155	155	17742
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
2	Atomic level insights intoÂmetal halide perovskiteÂmaterials by scanning tunneling microscopy and spectroscopy. Angewandte Chemie, 2022, 134, e202112352.	2.0	0
3	Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 99.	27.0	43
4	From film to ring: Quasi-circular inorganic lead halide perovskite grain induced growth of uniform lead silicate glass ring structure. Applied Physics Letters, 2022, 120, .	3.3	1
5	Understanding the nucleation and growth of the degenerated surface structure of the layered transition metal oxide cathodes for lithium-ion batteries by operando Raman spectroscopy. Journal of Electroanalytical Chemistry, 2022, 915, 116340.	3.8	1
6	Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nature Energy, 2022, 7, 528-536.	39.5	89
7	Scalable Fabrication of >90 cm ² Perovskite Solar Modules with >1000 h Operational Stability Based on the Intermediate Phase Strategy. Advanced Energy Materials, 2021, 11, 2003712.	19.5	76
8	Atomic-scale insight into the enhanced surface stability of methylammonium lead iodide perovskite by controlled deposition of lead chloride. Energy and Environmental Science, 2021, 14, 4541-4554.	30.8	31
9	Two-Dimensional Dion–Jacobson Structure Perovskites for Efficient Sky-Blue Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 908-914.	17.4	49
10	Comparison of Thermal Annealing <i>versus</i> Hydrothermal Treatment Effects on the Detection Performances of ZnO Nanowires. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10537-10552.	8.0	14
11	Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7, .	10.3	165
12	Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372, 1327-1332.	12.6	351
13	Phase Aggregation Suppression of Homogeneous Perovskites Processed in Ambient Condition toward Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103399.	14.9	18
14	Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Letters, 2021, 13, 155.	27.0	40
15	Atomic Scale Investigation of the CuPc–MAPbX ₃ Interface and the Effect of Non-Stoichiometric Perovskite Films on Interfacial Structures. ACS Nano, 2021, 15, 14813-14821.	14.6	8
16	Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge. Nature Communications, 2021, 12, 4738.	12.8	109
17	Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 3545-3554.	17.4	39
18	Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000Ah. Nano Energy, 2021, 87, 106152.	16.0	41

#	Article	IF	CITATIONS
19	A solid–liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. Journal Physics D: Applied Physics, 2021, 54, 475501.	2.8	3
20	CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Research, 2021, 14, 191-197.	10.4	34
21	Spectral Stable Blue-Light-Emitting Diodes via Asymmetric Organic Diamine Based Dion–Jacobson Perovskites. Journal of the American Chemical Society, 2021, 143, 19711-19718.	13.7	29
22	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	19.5	87
23	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€6olarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	2.0	16
24	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	13.8	334
25	Recent Progress of Allâ€Bromide Inorganic Perovskite Solar Cells. Energy Technology, 2020, 8, 1900961.	3.8	66
26	Interface engineering strategies towards Cs ₂ AgBiBr ₆ single-crystalline photodetectors with good Ohmic contact behaviours. Journal of Materials Chemistry C, 2020, 8, 276-284.	5.5	78
27	Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr ₃ Surfaces. Journal of Physical Chemistry C, 2020, 124, 1484-1491.	3.1	15
28	Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions. Matter, 2020, 2, 167-180.	10.0	38
29	Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 2020, 46, 215-228.	12.9	64
30	Rapid hybrid chemical vapor deposition for efficient and hysteresis-free perovskite solar modules with an operation lifetime exceeding 800 hours. Journal of Materials Chemistry A, 2020, 8, 23404-23412.	10.3	34
31	A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 2020, 5, 596-604.	39.5	274
32	Photon Upconverting Solid Films with Improved Efficiency for Endowing Perovskite Solar Cells with Nearâ∈Infrared Sensitivity. ChemPhotoChem, 2020, 4, 5271-5278.	3.0	26
33	In-situ passivation perovskite targeting efficient light-emitting diodes via spontaneously formed silica network. Nano Energy, 2020, 78, 105134.	16.0	28
34	The Impact of Atmosphere on Energetics of Lead Halide Perovskites. Advanced Energy Materials, 2020, 10, 2000908.	19.5	12
35	2D Derivative Phase Induced Growth of 3D All Inorganic Perovskite Micro–Nanowire Array Based Photodetectors. Advanced Functional Materials, 2020, 30, 2002526.	14.9	26
36	Inverse Growth of Large-Grain-Size and Stable Inorganic Perovskite Micronanowire Photodetectors. ACS Applied Materials & Diterfaces, 2020, 12, 14185-14194.	8.0	30

#	Article	IF	CITATIONS
37	Organic additive engineering toward efficient perovskite lightâ€emitting diodes. InformaÄnÃ-Materiály, 2020, 2, 1095-1108.	17.3	26
38	Imaging of the Atomic Structure of All-Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 818-823.	4.6	26
39	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	31.8	67
40	Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation. Advanced Energy Materials, 2020, 10, 1903696.	19.5	205
41	Thermodynamically stabilized β-CsPbI ₃ –based perovskite solar cells with efficiencies >18%. Science, 2019, 365, 591-595.	12.6	963
42	Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65, 104015.	16.0	170
43	Atomic-scale view of stability and degradation of single-crystal MAPbBr ₃ surfaces. Journal of Materials Chemistry A, 2019, 7, 20760-20766.	10.3	46
44	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	17.4	161
45	Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2032-2039.	17.4	79
46	Engineering Green-to-Blue Emitting CsPbBr ₃ Quantum-Dot Films with Efficient Ligand Passivation. ACS Energy Letters, 2019, 4, 2731-2738.	17.4	43
47	Surface Defect Dynamics in Organic–Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS Nano, 2019, 13, 12127-12136.	14.6	56
48	Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Advanced Materials, 2019, 31, e1804284.	21.0	161
49	Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 2019, 7, 2942-2964.	10.3	1,266
50	Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4, 585-593.	39.5	327
51	Improved SnO ₂ Electron Transport Layers Solutionâ€Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Advanced Energy Materials, 2019, 9, 1900834.	19.5	100
52	Thermal degradation of formamidinium based lead halide perovskites into <i>sym</i> -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. Journal of Materials Chemistry A, 2019, 7, 16912-16919.	10.3	163
53	Degradation Mechanism and Relative Stability of Methylammonium Halide Based Perovskites Analyzed on the Basis of Acid–Base Theory. ACS Applied Materials & 1, 12586-12593.	8.0	55
54	Significant THz absorption in CH3NH2 molecular defect-incorporated organic-inorganic hybrid perovskite thin film. Scientific Reports, 2019, 9, 5811.	3.3	26

#	Article	IF	Citations
55	Elucidating the Mechanism Involved in the Performance Improvement of Lithiumâ€lon Transition Metal Oxide Battery by Conducting Polymer. Advanced Materials Interfaces, 2019, 6, 1801785.	3.7	18
56	Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm $<$ sup $>$ 2 $<$ /sup $>$ approaching 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 6920-6929.	10.3	112
57	Negligibleâ€Pbâ€Waste and Upscalable Perovskite Deposition Technology for Highâ€Operationalâ€Stability Perovskite Solar Modules. Advanced Energy Materials, 2019, 9, 1803047.	19.5	68
58	Influences of Spiro-MeOTAD Hole Transport Layer on the Long-term Stabilities of Perovskite-based Solar Cells. , $2019, , .$		0
59	Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 2019, 10, 16.	12.8	430
60	Unraveling the Impact of Halide Mixing on Perovskite Stability. Journal of the American Chemical Society, 2019, 141, 3515-3523.	13.7	116
61	Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO ₂ Electron Transport Layer. Advanced Functional Materials, 2019, 29, 1806779.	14.9	118
62	Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries. Carbon, 2018, 132, 678-690.	10.3	16
63	Spin-Coated Crystalline Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2018, 9, 1318-1323.	4.6	37
64	Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 2018, 6, 9604-9612.	10.3	437
65	Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution forÂHighâ€Stability Allâ€Inorganic Perovskite Solar Cells withÂCarbon Electrodes. Advanced Energy Materials, 2018, 8, 1800504.	19.5	272
66	Research progress on organic–inorganic halide perovskite materials and solar cells. Journal Physics D: Applied Physics, 2018, 51, 093001.	2.8	56
67	Photovoltaics: Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells (Adv. Mater. Interfaces 1/2018). Advanced Materials Interfaces, 2018, 5, 1870003.	3.7	3
68	Largeâ€Area Perovskite Solar Modules: Combination of Hybrid CVD and Cation Exchange for Upscaling Csâ€Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability (Adv. Funct.) Tj ETQq0 0 () r gBT 9/Ov	erl ø ck 10 Tf 5
69	Scanning Probe Microscopy Applied to Organic–Inorganic Halide Perovskite Materials and Solar Cells. Small Methods, 2018, 2, 1700295.	8.6	57
70	High-throughput surface preparation for flexible slot die coated perovskite solar cells. Organic Electronics, 2018, 54, 72-79.	2.6	24
71	Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry B, 2018, 122, 511-520.	2.6	68
72	Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1700623.	3.7	316

#	Article	IF	Citations
73	Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Materials Today Energy, 2018, 7, 169-189.	4.7	231
74	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	19.5	77
75	Combination of Hybrid CVD and Cation Exchange for Upscaling Csâ€Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2018, 28, 1703835.	14.9	158
76	Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature Communications, 2018, 9, 3880.	12.8	109
77	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9, 4480.	12.8	193
78	Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990.	24.0	181
79	Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes. Journal of Materials Chemistry A, 2018, 6, 14449-14463.	10.3	37
80	"Heat Wave―of Metal Halide Perovskite Solar Cells Continues in Phoenix. ACS Energy Letters, 2018, 3, 1898-1903.	17.4	5
81	Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods, 2018, 2, 1800242.	8.6	26
82	Interfacial Flat-Lying Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22513-22519.	8.0	18
83	The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells. Journal Physics D: Applied Physics, 2018, 51, 294001.	2.8	23
84	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	21.0	132
85	Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nature Energy, 2017, 2, .	39.5	491
86	Application of Methylamine Gas in Fabricating Organic–Inorganic Hybrid Perovskite Solar Cells. Energy Technology, 2017, 5, 1750-1761.	3.8	46
87	Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Science Advances, 2017, 3, e1701186.	10.3	146
88	Lowâ€Cost Alternative Highâ€Performance Holeâ€Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIROâ€OMeTAD. Advanced Electronic Materials, 2017, 3, 1700139.	5.1	60
89	Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility. Journal of Physical Chemistry Letters, 2017, 8, 3947-3953.	4.6	101
90	Perovskite Solar Cellsâ€"Towards Commercialization. ACS Energy Letters, 2017, 2, 1749-1751.	17.4	107

#	Article	IF	Citations
91	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30197-30246.	8.0	453
92	Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. Journal of Physical Chemistry Letters, 2017, 8, 3193-3198.	4.6	113
93	Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. Journal of Materials Research, 2017, 32, 45-55.	2.6	37
94	Moisture and Oxygen Enhance Conductivity of LiTFSIâ€Doped Spiroâ€MeOTAD Hole Transport Layer in Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600117.	3.7	123
95	The presence of CH3NH2 neutral species in organometal halide perovskite films. Applied Physics Letters, 2016, 108, .	3.3	50
96	Post-annealing of MAPbl ₃ perovskite films with methylamine for efficient perovskite solar cells. Materials Horizons, 2016, 3, 548-555.	12.2	141
97	Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chemistry of Materials, 2016, 28, 5702-5709.	6.7	194
98	Thermal degradation of CH ₃ NH ₃ PbI ₃ perovskite into NH ₃ and CH ₃ I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy and Environmental Science, 2016, 9, 3406-3410.	30.8	616
99	Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4764-4794.	4.6	177
100	Rapid perovskite formation by CH ₃ NH ₂ gas-induced intercalation and reaction of Pbl ₂ . Journal of Materials Chemistry A, 2016, 4, 2494-2500.	10.3	115
101	Organometal halide perovskite thin films and solar cells by vapor deposition. Journal of Materials Chemistry A, 2016, 4, 6693-6713.	10.3	210
102	Perovskite Solar Cells: Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes (Adv. Mater. Interfaces 13/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	7
103	Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2015, 2, 1500195.	3.7	646
104	[Paper] p-Doping of Squaraine with F4-TCNQ by Solution Processing. ITE Transactions on Media Technology and Applications, 2015, 3, 133-142.	0.5	3
105	Pinhole-free hole transport layers significantly improve the stability of MAPbl ₃ -based perovskite solar cells under operating conditions. Journal of Materials Chemistry A, 2015, 3, 15451-15456.	10.3	122
106	Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering. Scientific Reports, 2015, 5, 9863.	3.3	119
107	Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 2015, 3, 14631-14641.	10.3	126
108	Real-Space Imaging of the Atomic Structure of Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2015, 137, 16049-16054.	13.7	155

#	Article	lF	Citations
109	Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials, 2015, 27, 562-569.	6.7	357
110	Unraveling the Edge Structures of Platinum (111)-Supported Ultrathin FeO Islands: The Influence of Oxidation State. ACS Nano, 2015, 9, 573-583.	14.6	37
111	Temperature-dependent hysteresis effects in perovskite-based solar cells. Journal of Materials Chemistry A, 2015, 3, 9074-9080.	10.3	121
112	Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. Journal of Physical Chemistry Letters, 2014, 5, 1374-1379.	4.6	96
113	Shape-Dependent Catalytic Oxidation of 2-Butanol over Pt Nanoparticles Supported on \hat{I}^3 -Al _{0₃. ACS Catalysis, 2014, 4, 109-115.}	11.2	39
114	High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A, 2014, 2, 18742-18745.	10.3	284
115	Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy and Environmental Science, 2014, 7, 3989-3993.	30.8	213
116	Role and Evolution of Nanoparticle Structure and Chemical State during the Oxidation of NO over Size- and Shape-Controlled Pt/l^3 -Al ₂ O ₃ Catalysts under Operando Conditions. ACS Catalysis, 2014, 4, 1875-1884.	11.2	42
117	Nano-Gold Diggers: Au-Assisted SiO ₂ -Decomposition and Desorption in Supported Nanocatalysts. ACS Nano, 2013, 7, 10327-10334.	14.6	28
118	Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors and Actuators A: Physical, 2013, 189, 399-408.	4.1	227
119	Trends in the Binding Strength of Surface Species on Nanoparticles: How Does the Adsorption Energy Scale with the Particle Size?. Angewandte Chemie - International Edition, 2013, 52, 5175-5179.	13.8	66
120	Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles. ACS Catalysis, 2013, 3, 1460-1468.	11.2	44
121	In Situ Study of CO Oxidation on HOPG‧upported Pt Nanoparticles. ChemPhysChem, 2013, 14, 1553-1557.	2.1	16
122	Structure of Stoichiometric and Oxygen-Rich Ultrathin FeO(111) Films Grown on Pd(111). Journal of Physical Chemistry C, 2013, 117, 15155-15163.	3.1	52
123	Size-dependent evolution of the atomic vibrational density of states and thermodynamic properties of isolated Fe nanoparticles. Physical Review B, 2012, 86, .	3.2	30
124	Highly sensitive and selective hydrogen single-nanowire nanosensor. Sensors and Actuators B: Chemical, 2012, 173, 772-780.	7.8	149
125	In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on \hat{I}^3 -Al2O3: pretreatment and environmental effects. Physical Chemistry Chemical Physics, 2012, 14, 11457.	2.8	60
126	Electronic properties and charge transfer phenomena in Pt nanoparticles on î³-Al2O3: size, shape, support, and adsorbate effects. Physical Chemistry Chemical Physics, 2012, 14, 11766.	2.8	76

#	Article	IF	Citations
127	Stability of Platinum Nanoparticles Supported on SiO ₂ /Si(111): A High-Pressure X-ray Photoelectron Spectroscopy Study. ACS Nano, 2012, 6, 10743-10749.	14.6	61
128	Evolution of the Structure and Chemical State of Pd Nanoparticles during the in Situ Catalytic Reduction of NO with H ₂ . Journal of the American Chemical Society, 2011, 133, 13455-13464.	13.7	107
129	Oxygen Chemisorption, Formation, and Thermal Stability of Pt Oxides on Pt Nanoparticles Supported on SiO ₂ /Si(001): Size Effects. Journal of Physical Chemistry C, 2011, 115, 16856-16866.	3.1	114
130	Thermodynamic properties of Pt nanoparticles: Size, shape, support, and adsorbate effects. Physical Review B, 2011, 84, .	3.2	50
131	Structure, Chemical Composition, And Reactivity Correlations during the In Situ Oxidation of 2-Propanol. Journal of the American Chemical Society, 2011, 133, 6728-6735.	13.7	44
132	Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar ZnO thin films. Thin Solid Films, 2011, 519, 7738-7749.	1.8	37
133	Near-barrier quasielastic scattering as a sensitive tool to derive nuclear matter diffuseness. Physical Review C, $2011, 84, .$	2.9	22
134	Synthesis and characterization of ZnO nanowires for nanosensor applications. Materials Research Bulletin, 2010, 45, 1026-1032.	5.2	227
135	Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Applied Surface Science, 2010, 256, 1895-1907.	6.1	418
136	Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. Journal of Physical Chemistry C, 2010, 114, 22119-22133.	3.1	175
137	Shape-Dependent Catalytic Properties of Pt Nanoparticles. Journal of the American Chemical Society, 2010, 132, 15714-15719.	13.7	387
138	Synthesis and Characterization of Ag- or Sb-Doped ZnO Nanorods by a Facile Hydrothermal Route. Journal of Physical Chemistry C, 2010, 114, 12401-12408.	3.1	227
139	Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles. Physical Review B, 2010, 82, .	3.2	47
140	Excitation wavelength independent sensitized Er3+ concentration in as-deposited and low temperature annealed Si-rich SiO2 films. Applied Physics Letters, 2009, 95, .	3.3	8
141	Phonon density of states of self-assembled isolated Fe-rich Fe-Pt alloy nanoclusters. Physical Review B, 2009, 80, .	3.2	22
142	Structure and phonon density of states of supported size-selected F57eAu nanoclusters: A nuclear resonant inelastic x-ray scattering study. Applied Physics Letters, 2009, 95, 143103.	3.3	25
143	Thermal Stability and Segregation Processes in Self-Assembled Size-Selected AuxFe1-x Nanoparticles Deposited on TiO2(110): Composition Effects. Journal of Physical Chemistry C, 2009, 113, 1433-1446.	3.1	43
144	Formation and Thermal Stability of Au ₂ O ₃ on Gold Nanoparticles:  Size and Support Effects. Journal of Physical Chemistry C, 2008, 112, 4676-4686.	3.1	155

#	Article	IF	Citations
145	Reply to "Comment on  Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support EffectsÊ⅓― Journal of Physical Chemistry C, 2008, 112, 16723-16724.	3.1	3
146	Size Effects on the Desorption of O ₂ from Au ₂ O ₃ Au ^O Nanoparticles Supported on SiO ₂ : A TPD Study. Journal of Physical Chemistry C, 2008, 112, 18543-18550.	3.1	20
147	Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catalysis Letters, 2007, 113, 86-94.	2.6	98
148	Local investigation of the electronic properties of size-selected Au nanoparticles by scanning tunneling spectroscopy. Applied Physics Letters, 2006, 89, 043101.	3.3	42
149	In situ gas-phase catalytic properties of TiC-supported size-selected gold nanoparticles synthesized by diblock copolymer encapsulation. Surface Science, 2006, 600, 5041-5050.	1.9	103
150	Quasi-elastic barrier distribution of the 16,180+92Mo. Nuclear Physics A, 2003, 725, 60-68.	1.5	10
151	Strong coupled-channel effects in the barrier distributions of 16,180+58Ni. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 527, 187-192.	4.1	28
152	Up-Scaling of Organic-Inorganic Hybrid Perovskite Solar Cells and Modules., 0,,.		0