
Vikram Misra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/870132/publications.pdf Version: 2024-02-01

VIRDAM MISDA

#	Article	IF	CITATIONS
1	Novel Insights Into Immune Systems of Bats. Frontiers in Immunology, 2020, 11, 26.	4.8	212
2	SARS-CoV2 infectivity is potentially modulated by host redox status. Computational and Structural Biotechnology Journal, 2020, 18, 3705-3711.	4.1	25
3	Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Scientific Reports, 2020, 10, 7257.	3.3	22
4	When the left side knows something happened to the right – sensing injury in neurons contralateral and remote to injury. Neural Regeneration Research, 2020, 15, 1854.	3.0	3
5	FOXO3a as a sensor of unilateral nerve injury in sensory neurons ipsilateral, contralateral and remote to injury. Neural Regeneration Research, 2020, 15, 2353.	3.0	4
6	Arousal from hibernation and reactivation of <i>Eptesicus fuscus</i> gammaherpesvirus (<i>Ef</i> <scp>HV</scp>) in big brown bats. Transboundary and Emerging Diseases, 2019, 66, 1054-1062.	3.0	14
7	Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses, 2019, 11, 192.	3.3	104
8	Axotomy Induces Phasic Alterations in Luman/CREB3 Expression and Nuclear Localization in Injured and Contralateral Uninjured Sensory Neurons: Correlation With Intrinsic Axon Growth Capacity. Journal of Neuropathology and Experimental Neurology, 2019, 78, 348-364.	1.7	10
9	Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses, 2019, 11, 152.	3.3	33
10	Bats and Coronaviruses. Viruses, 2019, 11, 41.	3.3	357
11	Tools to study pathogen-host interactions in bats. Virus Research, 2018, 248, 5-12.	2.2	29
12	Isolation, characterization and prevalence of a novel Gammaherpesvirus in Eptesicus fuscus, the North American big brown bat. Virology, 2018, 516, 227-238.	2.4	20
13	Caution: choice of fixative can influence the visualization of the location of a transcription factor in mammalian cells. BioTechniques, 2018, 65, 65-69.	1.8	3
14	White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Scientific Reports, 2018, 8, 15508.	3.3	43
15	Environmentally persistent pathogens present unique challenges for studies of host–pathogen interactions: Reply to Field (2018). Ecology and Evolution, 2018, 8, 5238-5241.	1.9	4
16	Seroprevalence of Rift Valley Fever Virus Antibodies in Cattle in Mali, 2005–2014. American Journal of Tropical Medicine and Hygiene, 2018, 98, 872-874.	1.4	4
17	The other whiteâ€nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen <i>Pseudogymnoascus destructans</i> . Ecology and Evolution, 2017, 7, 7161-7170.	1.9	24
18	Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Scientific Reports, 2017, 7, 2232.	3.3	79

Vikram Misra

#	Article	IF	CITATIONS
19	Fungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination. MSphere, 2017, 2, .	2.9	24
20	A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. Journal of General Virology, 2017, 98, 2297-2309.	2.9	44
21	Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. Reproduction, Fertility and Development, 2016, 28, 795.	0.4	15
22	Evidence of â€~sickness behaviour' in bats with white-nose syndrome. Behaviour, 2016, 153, 981-1003.	0.8	20
23	Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen. Journal of Virological Methods, 2016, 237, 166-173.	2.1	24
24	Broad and Temperature Independent Replication Potential of Filoviruses on Cells Derived From Old and New World Bat Species. Journal of Infectious Diseases, 2016, 214, S297-S302.	4.0	22
25	White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods. EcoHealth, 2016, 13, 60-71.	2.0	39
26	Surprise is a Neglected Aspect of Emerging Infectious Disease. EcoHealth, 2015, 12, 208-211.	2.0	13
27	The effect of Zhangfei/CREBZF on cell growth, differentiation, apoptosis, migration, and the unfolded protein response in several canine osteosarcoma cell lines. BMC Veterinary Research, 2015, 11, 22.	1.9	14
28	The Unfolded Protein Response and Cholesterol Biosynthesis Link Luman/CREB3 to Regenerative Axon Growth in Sensory Neurons. Journal of Neuroscience, 2015, 35, 14557-14570.	3.6	44
29	Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiology and Behavior, 2015, 140, 71-78.	2.1	44
30	Cloning and Characterization of Rat Luman/CREB3, A Transcription Factor Highly Expressed in Nervous System Tissue. Journal of Molecular Neuroscience, 2015, 55, 347-354.	2.3	9
31	Development of a murine ocular posterior segment explant culture for the study of intravitreous vector delivery. Canadian Journal of Veterinary Research, 2015, 79, 31-8.	0.2	1
32	Effects of cyclic AMP response element binding protein–Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle, 2014, 13, 279-292.	2.6	12
33	Behaviour of hibernating little brown bats experimentally inoculated with the pathogen that causes white-nose syndrome. Animal Behaviour, 2014, 88, 157-164.	1.9	45
34	Sensing nerve injury at the axonal ER: Activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16142-16147.	7.1	45
35	Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans. PLoS ONE, 2014, 9, e112285.	2.5	25
36	Increase in gene-transcript levels as indicators of up-regulation of the unfolded protein response in spontaneous canine tumors. Canadian Journal of Veterinary Research, 2014, 78, 161-7.	0.2	0

#	Article	IF	CITATIONS
37	The effect of <scp>Z</scp> hangfei on the unfolded protein response and growth of cells derived from canine and human osteosarcomas. Veterinary and Comparative Oncology, 2013, 11, 140-150.	1.8	12
38	Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biology Letters, 2013, 9, 20130177.	2.3	150
39	Abstract B59: Zhangfei/CREBZF arrests the growth of osteosarcoma cells by displacing Mdm2 and stabilizing p53 , 2013, , .		1
40	Zhangfei/CREB-ZF – A Potential Regulator of the Unfolded Protein Response. PLoS ONE, 2013, 8, e77256.	2.5	13
41	Inoculation of bats with European <i>Geomyces destructans</i> supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6999-7003.	7.1	351
42	Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. Journal of Neuro-Oncology, 2012, 109, 485-501.	2.9	16
43	Detection of polyoma and corona viruses in bats of Canada. Journal of General Virology, 2009, 90, 2015-2022.	2.9	80
44	Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. Journal of Neuro-Oncology, 2009, 91, 7-17.	2.9	15
45	Zhangfei, a novel regulator of the human nerve growth factor receptor, trkA. Journal of NeuroVirology, 2008, 14, 425-436.	2.1	13
46	Novel Brn3a cis-acting sequences mediate transcription of human trkA in neurons. Journal of Neurochemistry, 2008, 105, 425-435.	3.9	9
47	G125A single-nucleotide polymorphism in the human BAX promoter affects gene expression. Oncogene, 2005, 24, 2042-2049.	5.9	28
48	Identification and characterization of AtCASP, a plant transmembrane Golgi matrix protein. Plant Molecular Biology, 2005, 58, 109-122.	3.9	70
49	The Neuronal Host Cell Factor-Binding Protein Zhangfei Inhibits Herpes Simplex Virus Replication. Journal of Virology, 2005, 79, 14708-14718.	3.4	41
50	Zhangfei Is a Potent and Specific Inhibitor of the Host Cell Factor-binding Transcription Factor Luman. Journal of Biological Chemistry, 2005, 280, 15257-15266.	3.4	38
51	Luman, the Cellular Counterpart of Herpes Simplex Virus VP16, Is Processed by Regulated Intramembrane Proteolysis. Molecular and Cellular Biology, 2002, 22, 5639-5649.	2.3	122
52	Characterization of a recombinant porcine follistatin in a heat shock expression system. Canadian Journal of Animal Science, 2002, 82, 295-304.	1.5	1
53	Sequence analysis of the alpha trans-inducing factor of bovine herpesvirus type 5 (BHV-5). Virus Genes, 2002, 24, 149-152.	1.6	3
54	Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Research, 2000, 28, 2446-2454.	14.5	82

#	Article	IF	CITATIONS
55	Potential Role for Luman, the Cellular Homologue of Herpes Simplex Virus VP16 (α Gene trans-Inducing) Tj ETQq1	10.7843 3.4	14 rgBT /0 78
56	The Herpesvirus Transactivator VP16 Mimics a Human Basic Domain Leucine Zipper Protein, Luman, in Its Interaction with HCF. Journal of Virology, 1998, 72, 6291-6297.	3.4	88
57	Luman, a New Member of the CREB/ATF Family, Binds to Herpes Simplex Virus VP16-Associated Host Cellular Factor. Molecular and Cellular Biology, 1997, 17, 5117-5126.	2.3	164
58	Feline Leukemia Virus Detection by ELISA and PCR in Peripheral Blood from 68 Cats with High, Moderate, or Low Suspicion of having FeLV-Related Disease. Journal of Veterinary Diagnostic Investigation, 1996, 8, 25-30.	1.1	22
59	Conformational alteration of Oct-1 upon DNA binding dictates selectivity in differential interactions with related transcriptional coactivators. Molecular and Cellular Biology, 1996, 16, 4404-4413.	2.3	41
60	Sequence analysis of the putative viral enhancer in tissues from 33 cats with various feline leukemia virus-related diseases. Veterinary Microbiology, 1996, 53, 213-225.	1.9	6
61	Gene contents in a 31-kb segment at the left genome end of bovine herpesvirus-1. Veterinary Microbiology, 1996, 53, 67-77.	1.9	20
62	Follistatin has characteristics of a primary response gene in porcine granulosa cells. Endocrine, 1995, 3, 609-614.	2.2	2
63	The bovine herpesvirus alpha gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. Journal of Virology, 1995, 69, 5209-5216.	3.4	68
64	Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. Journal of Virology, 1994, 68, 1667-1674.	3.4	46
65	Protein and DNA elements involved in transactivation of the promoter of the bovine herpesvirus (BHV) 1 IE-1 transcription unit by the BHV alpha gene trans-inducing factor. Journal of Virology, 1994, 68, 4898-4909.	3.4	76
66	Sequences of the bovine herpesvims 1 homologue of herpes simplex virus type-1 α-trans-inducing factor (UL48). Gene, 1992, 119, 259-263.	2.2	26
67	Detection of equine herpesvirus and differentiation of equine herpesvirus type 1 from type 4 by the polymerase chain reaction. Canadian Journal of Microbiology, 1992, 38, 1193-1196.	1.7	41
68	Cleavage of the bovine herpesvirus glycoprotein B is not essential for its function. Journal of General Virology, 1991, 72, 2083-2090.	2.9	20
69	Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: a strategy for studying the function of an essential herpesvirus gene. Journal of General Virology, 1991, 72, 385-392.	2.9	22
70	The Most Abundant Protein in Bovine Herpes 1 Virions is a Homologue of Herpes Simplex Virus Type 1 UL47. Journal of General Virology, 1991, 72, 3077-3084.	2.9	48
71	Temperature-sensitive Mutants of Bovine Herpesvirus Type 1: Mutants Which Make Unaltered Levels of 'Early' Glycoproteins but Fail to Synthesize a 'Late' Glycoprotein. Journal of General Virology, 1989, 70, 125-132.	2.9	12
72	Detection and Quantitation of Pea and Soy-Derived Proteins in Calf Milk Replacers. Journal of Dairy Science, 1989, 72, 157-161.	3.4	2

#	Article	IF	CITATIONS
73	Sequence of a bovine herpesvirus type-1 glycoprotein gene that is homologous to the herpes simplex gene for the glycoprotein gB. Virology, 1988, 166, 542-549.	2.4	87
74	A synthetic luteinizing hormone releasing hormone vaccine. Journal of Reproductive Immunology, 1988, 13, 249-261.	1.9	19
75	A synthetic luteinizing hormone releasing hormone vaccine II. Temporal aspects of titer development and formulation trials in BALB/c mice. Journal of Reproductive Immunology, 1988, 14, 47-58.	1.9	7
76	Monoclonal antibodies against LHRH: development and immunoactivity in vivo and in vitro. Journal of Reproductive Immunology, 1985, 7, 171-184.	1.9	19
77	Interactions of monoclonal antibodies and bovine herpesvirus type 1 (BHV-1) glycoproteins: Characterization of their biochemical and immunological properties. Virology, 1984, 135, 466-479.	2.4	167
78	Analysis of bovine herpes virus-type 1 isolates by restriction endonuclease fingerprinting. Archives of Virology, 1983, 76, 341-354.	2.1	73
79	Inhibition of glycosylation of bovine herpesvirus 1 glycoproteins by the thymidine analog (E)-5-(2) Tj ETQq1 1 0.7	84314 rgE 3.2	3T /Overlock 12
80	Susceptibility of bovid herpesvirus 1 to antiviral drugs: in vitro versus in vivo efficacy of (E)-5-(2-Bromovinyl)-2'-deoxyuridine. Antimicrobial Agents and Chemotherapy, 1983, 23, 715-720.	3.2	18
81	Bovid herpesvirus type-1 (Infectious bovine rhinotracheitis virus) induced thymidine kinase. Virology, 1982, 118, 191-201.	2.4	47
82	Herpesvirus-induced "early" glycoprotein: characterization and possible role in immune cytolysis. Journal of Virology, 1982, 43, 1046-1054.	3.4	48
83	Effect of tunicamycin on rotavirus assembly and infectivity. Journal of Virology, 1982, 43, 1082-1090.	3.4	52
84	Genetic heterogeneity within individual bovine rotavirus isolates. Journal of Virology, 1982, 44, 813-822.	3.4	57
85	Bovine rotavirus-cell interactions: Effect of virus infection on cellular integrity and macromolecular synthesis. Virology, 1981, 114, 86-97.	2.4	25
86	Levamisole and bovine immunity: <i>in vitro</i> and <i>in vivo</i> effects on immune responses to herpesvirus immunization. Canadian Journal of Microbiology, 1981, 27, 1312-1319.	1.7	16
87	Minor base sequence differences between the genomes of two strains of murine cytomegalovirus differing in virulence. Archives of Virology, 1980, 64, 1-8.	2.1	30
88	Model systems for analysis of latent cytomegalovirus infections. Canadian Journal of Microbiology, 1979, 25, 245-253.	1.7	10
89	Vertical Transmission of Murine Cytomegalovirus. Journal of General Virology, 1979, 42, 621-625.	2.9	32
90	lsolation and characterization of recombinant DNA plasmids carrying Drosophila tRNA genes. Gene, 1979, 7, 197-215.	2.2	37

#	Article	IF	CITATIONS
91	Murine cytomegalovirus gene expression during nonproductive infection in go-phase 3T3 cells. Virology, 1978, 90, 279-287.	2.4	17
92	Multiple Interactions Between Murine Cytomegalovirus and Lymphoid Cells In Vitro. Journal of General Virology, 1978, 38, 149-159.	2.9	35
93	Regulation of murine cytomegalovirus gene expression. I. Transcription during productive infection. Journal of Virology, 1978, 27, 263-268.	3.4	28
94	The enumeration of viral genomes in murine cytomegalovirus-infected cells. Virology, 1977, 83, 458-461.	2.4	25
95	Murine cytomegalovirus infection in a non-permissive line of mouse fibroblasts. Archives of Virology, 1977, 55, 305-313.	2.1	5
96	Properties of the multicapsid virions of murine cytomegalovirus. Virology, 1976, 72, 224-234.	2.4	41
97	Cytomegalovirus infectivity: Analysis of the phenomenon of centrifugal enhancement of infectivity. Virology, 1976, 72, 235-243.	2.4	141