
Christophe Voisin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon nanotubes as emerging quantum-light sources. Nature Materials, 2018, 17, 663-670.	13.3	210
2	Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Physics, 2006, 2, 759-764.	6.5	190
3	Single photon emission from graphene quantum dots at room temperature. Nature Communications, 2018, 9, 3470.	5.8	86
4	Ultra-coherent single photon source. Applied Physics Letters, 2011, 99, .	1.5	85
5	Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime. Physical Review Letters, 2016, 116, 247402.	2.9	79
6	Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes. Nano Letters, 2007, 7, 398-402.	4.5	73
7	Îâ€Stacking Functionalization of Carbon Nanotubes through Micelle Swelling. ChemPhysChem, 2010, 11, 1667-1672.	1.0	63
8	Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. Physical Review B, 2010, 81, .	1.1	55
9	Quantum efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds. Applied Physics Letters, 2010, 97, .	1.5	48
10	Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods. Chemistry of Materials, 2013, 25, 2700-2707.	3.2	42
11	Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots. Physical Review B, 2001, 65, .	1.1	38
12	Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement. Physical Review Letters, 2014, 113, 057402.	2.9	38
13	Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes. Physical Review Letters, 2013, 111, 137402.	2.9	37
14	Excitation Transfer in Functionalized Carbon Nanotubes. ChemPhysChem, 2008, 9, 1250-1253.	1.0	36
15	Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes. Physical Review Letters, 2011, 107, 127401.	2.9	35
16	Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion. Journal of Applied Physics, 2009, 105, 094323.	1.1	32
17	Fluorescence from graphene nanoribbons of well-defined structure. Carbon, 2017, 119, 235-240.	5.4	30
18	Bandgap photoluminescence of semiconducting single-wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1057-1060.	1.3	28

Christophe Voisin

#	Article	IF	CITATIONS
19	Exploiting One-Dimensional Exciton–Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube. Nano Letters, 2017, 17, 4184-4188.	4.5	24
20	Local Field Effects in the Energy Transfer between a Chromophore and a Carbon Nanotube: A Single-Nanocompound Investigation. ACS Nano, 2012, 6, 8796-8802.	7.3	23
21	Monolithic microcavity with carbon nanotubes as active material. Applied Physics Letters, 2013, 102, 153102.	1.5	20
22	Diameter-selective non-covalent functionalization of carbon nanotubes with porphyrin monomers. Nanoscale, 2016, 8, 2326-2332.	2.8	18
23	Phonon-induced dephasing in single-wall carbon nanotubes. Physical Review B, 2011, 84, .	1.1	16
24	Strong reduction of exciton-phonon coupling in single-wall carbon nanotubes of high crystalline quality: Insight into broadening mechanisms and exciton localization. Physical Review B, 2015, 91, .	1.1	14
25	Optical Investigation of Onâ€6urface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	0.7	14
26	Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2017, 121, 24264-24271.	1.5	11
27	Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, 2019, 19, 7210-7216.	4.5	10
28	Davydov Splitting and Self-Organization in a Porphyrin Layer Noncovalently Attached to Single Wall Carbon Nanotubes. Nano Letters, 2017, 17, 6778-6782.	4.5	8
29	Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. Nanoscale, 2022, 14, 3826-3833.	2.8	7
30	Controlling the kinetics of the non-covalent functionalization of carbon nanotubes using sub-cmc dilutions in a co-surfactant environment. Nanoscale, 2017, 9, 2646-2651.	2.8	6
31	Single-walled carbon nanotube/polystyrene core–shell hybrids: synthesis and photoluminescence properties. Journal of Materials Chemistry C, 2018, 6, 4786-4792.	2.7	5
32	Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature. Journal of Chemical Physics, 2022, 156, 104302.	1.2	4
33	Interplay of spectral diffusion and phonon-broadening in individual photo-emitters: the case of carbon nanotubes. Nanoscale, 2018, 10, 683-689.	2.8	3
34	Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime. Physical Review B, 2018, 97, .	1.1	2
35	Photostability of Single-Walled Carbon Nanotubes/Polymer Core–Shell Hybrids as Telecom Wavelength Emitters. ACS Applied Nano Materials, 2020, 3, 7291-7296.	2.4	1
36	(Invited) How to Use Acoustic Phonons to Enrich the Properties of a Cavity Coupled Nano-Emitter ?. ECS Meeting Abstracts, 2021, MA2021-01, 600-600.	0.0	0

CHRISTOPHE VOISIN

#	Article	IF	CITATIONS
37	(Invited) The Electroluminescence of Graphene. ECS Meeting Abstracts, 2021, MA2021-01, 603-603.	0.0	ο
38	(Invited) Photostability of Core-Shell Structures at Low Temperature. ECS Meeting Abstracts, 2021, MA2021-01, 550-550.	0.0	0
39	(Invited) Functionalization of Carbon Nanotubes in a Micellar Environment. ECS Meeting Abstracts, 2018, , .	0.0	Ο
40	(Invited) Interplay of Spectral Diffusion and Phonon Broadening in Carbon Nanotubes: Implications for Quantum Optics. ECS Meeting Abstracts, 2018, , .	0.0	0
41	(Invited) Hot Electron Cooling in a Zener-Klein Graphene on BN Transistor: The Role of Hyperbolic Polaritons. ECS Meeting Abstracts, 2018, , .	0.0	Ο
42	(Invited) Carbon Nanotube and Porphyrins: Materials for Optics and Energy Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
43	(Invited) Photophysics of Cabon Nanostructures. ECS Meeting Abstracts, 2019, , .	0.0	0
44	(Invited) Super-Localization of Excitons in Carbon Nanotubes at Cryogenic Temperatures. ECS Meeting Abstracts, 2019, , .	0.0	0
45	(Invited) Optical Properties of Graphene Nanoribbons and Quantum Dots. ECS Meeting Abstracts, 2020, MA2020-01, 730-730.	0.0	Ο
46	(Invited) Photostability of Core-Shell Structures at Low Temperature. ECS Meeting Abstracts, 2020, MA2020-01, 698-698.	0.0	0
47	(Invited) Spontaneous and Intentional Exciton Trapping in Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 718-718.	0.0	Ο
48	(Invited) Electroluminescent Hyperbolic Cooling of Graphene Field Effect Transistors. ECS Meeting Abstracts, 2020, MA2020-01, 750-750.	0.0	0
49	(Invited) How to Use Acoustic Phonons to Enrich the Properties of a Cavity Coupled Nano-Emitter?. ECS Meeting Abstracts, 2020, MA2020-01, 755-755.	0.0	Ο
50	(Invited) Influence of Vibrations on the Emission Properties of Single Graphene Quantum Dots. ECS Meeting Abstracts, 2022, MA2022-01, 741-741.	0.0	0