
Anthony A Kossiakoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8700823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 2014, 512, 218-222.	13.7	433
2	The X-ray structure of a growth hormone–prolactin receptor complex. Nature, 1994, 372, 478-481.	13.7	399
3	Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 2013, 497, 137-141.	13.7	393
4	High-throughput Generation of Synthetic Antibodies from Highly Functional Minimalist Phage-displayed Libraries. Journal of Molecular Biology, 2007, 373, 924-940.	2.0	315
5	Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature, 2018, 558, 553-558.	13.7	230
6	Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nature Structural and Molecular Biology, 2014, 21, 244-252.	3.6	228
7	Crystal structure of full-length KcsA in its closed conformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6644-6649.	3.3	213
8	X-ray Structures of the Antigen-binding Domains from Three Variants of Humanized anti-p185HER2 Antibody 4D5 and Comparison with Molecular Modeling. Journal of Molecular Biology, 1993, 229, 969-995.	2.0	185
9	Architecture of the fungal nuclear pore inner ring complex. Science, 2015, 350, 56-64.	6.0	125
10	Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576, 315-320.	13.7	123
11	Synthetic antibodies for specific recognition and crystallization of structured RNA. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 82-87.	3.3	119
12	Comprehensive and Quantitative Mapping of Energy Landscapes for Protein-Protein Interactions by Rapid Combinatorial Scanning. Journal of Biological Chemistry, 2006, 281, 22378-22385.	1.6	112
13	Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nature Methods, 2015, 12, 725-731.	9.0	109
14	Architecture of the nuclear pore complex coat. Science, 2015, 347, 1148-1152.	6.0	104
15	Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science, 2015, 347, 1152-1155.	6.0	100
16	A High Through-put Platform for Recombinant Antibodies to Folded Proteins. Molecular and Cellular Proteomics, 2015, 14, 2833-2847.	2.5	100
17	Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods, 2013, 60, 3-14.	1.9	89
18	Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature, 2021, 595, 600-605.	13.7	87

ANTHONY A KOSSIAKOFF

#	Article	IF	CITATIONS
19	Exploring the Capacity of Minimalist Protein Interfaces: Interface Energetics and Affinity Maturation to Picomolar KD of a Single-domain Antibody with a Flat Paratope. Journal of Molecular Biology, 2007, 373, 941-953.	2.0	82
20	A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nature Structural and Molecular Biology, 2011, 18, 100-106.	3.6	75
21	Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Reports, 2014, 8, 297-310.	2.9	72
22	Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. ELife, 2020, 9, .	2.8	68
23	Mechanism of activation gating in the full-length KcsA K ⁺ channel. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11896-11899.	3.3	65
24	A YidC-like Protein in the Archaeal Plasma Membrane. Structure, 2015, 23, 1715-1724.	1.6	65
25	Architecture of the cytoplasmic face of the nuclear pore. Science, 2022, 376, .	6.0	65
26	Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nature Structural and Molecular Biology, 2011, 18, 437-442.	3.6	62
27	Toward chaperoneâ€assisted crystallography: Protein engineering enhancement of crystal packing and Xâ€ray phasing capabilities of a camelid singleâ€domain antibody (V _H H) scaffold. Protein Science, 2008, 17, 1175-1187.	3.1	61
28	Structural basis of omega-3 fatty acid transport across the blood–brain barrier. Nature, 2021, 595, 315-319.	13.7	61
29	Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. Structure, 2016, 24, 300-309.	1.6	57
30	Synthetic antibodies against BRIL as universal fiducial marks for singleâ^'particle cryoEM structure determination of membrane proteins. Nature Communications, 2020, 11, 1598.	5.8	57
31	Structure and mechanism of the ER-based glucosyltransferase ALG6. Nature, 2020, 579, 443-447.	13.7	52
32	Exploring and designing protein function with restricted diversity. Current Opinion in Chemical Biology, 2007, 11, 347-354.	2.8	50
33	Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. Journal of Molecular Biology, 2018, 430, 337-347.	2.0	50
34	Phage Display Selections for Affinity Reagents to Membrane Proteins in Nanodiscs. Methods in Enzymology, 2015, 557, 219-245.	0.4	46
35	Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELife, 2018, 7, .	2.8	45
36	The Functional Binding Epitope of a High Affinity Variant of Human Growth Hormone Mapped by Shotgun Alanine-scanning Mutagenesis: Insights into the Mechanisms Responsible for Improved Affinity. Journal of Molecular Biology, 2003, 332, 195-204.	2.0	42

#	Article	IF	CITATIONS
37	An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11011-11015.	3.3	42
38	Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10010-10015.	3.3	42
39	Structure of an AMPK complex in an inactive, ATP-bound state. Science, 2021, 373, 413-419.	6.0	42
40	Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9095-E9104.	3.3	40
41	K29-linked ubiquitin signaling regulates proteotoxic stress response and cell cycle. Nature Chemical Biology, 2021, 17, 896-905.	3.9	40
42	Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
43	Shotgun Alanine Scanning Shows That Growth Hormone Can Bind Productivelyto Its Receptor through a Drastically MinimizedInterface. Journal of Biological Chemistry, 2005, 280, 25524-25532.	1.6	38
44	A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. Nature, 2022, 607, 374-380.	13.7	36
45	The Structural Basis for Biological Signaling, Regulation, and Specificity in the Growth Hormone–Prolactin System of Hormones and Receptors. Advances in Protein Chemistry, 2004, 68, 147-169.	4.4	35
46	Alternative views of functional protein binding epitopes obtained by combinatorial shotgun scanning mutagenesis. Protein Science, 2005, 14, 2405-2413.	3.1	34
47	Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. Science Advances, 2022, 8, .	4.7	31
48	Understanding mechanisms governing protein–protein interactions from synthetic binding interfaces. Current Opinion in Structural Biology, 2008, 18, 499-506.	2.6	29
49	The 1.38 Ã crystal structure of DmsD protein from <i>Salmonella typhimurium</i> , a proofreading chaperone on the Tat pathway. Proteins: Structure, Function and Bioinformatics, 2008, 71, 525-533.	1.5	28
50	Engineering synthetic antibody binders for allosteric inhibition of prolactin receptor signaling. Cell Communication and Signaling, 2015, 13, 1.	2.7	28
51	Applications for an engineered Protein-G variant with a pH controllable affinity to antibody fragments. Journal of Immunological Methods, 2014, 415, 24-30.	0.6	27
52	Intramolecular Cooperativity in a Protein Binding Site Assessed by Combinatorial Shotgun Scanning Mutagenesis. Journal of Molecular Biology, 2005, 347, 489-494.	2.0	26
53	Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins. PLoS ONE, 2015, 10, e0139695.	1.1	26
54	Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins. Journal of Biological Chemistry, 2018, 293, 2815-2828.	1.6	26

ANTHONY A KOSSIAKOFF

#	Article	IF	CITATIONS
55	Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature, 2022, 604, 371-376.	13.7	25
56	Structures of ABCB4 provide insight into phosphatidylcholine translocation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
57	Scalable High Throughput Selection From Phage-displayed Synthetic Antibody Libraries. Journal of Visualized Experiments, 2015, , 51492.	0.2	22
58	Crystal Structure and Site 1 Binding Energetics of Human Placental Lactogen. Journal of Molecular Biology, 2006, 358, 773-784.	2.0	21
59	Development of "Plug and Play―Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM. Structure, 2019, 27, 1862-1874.e7.	1.6	19
60	A New Versatile Immobilization Tag Based on the Ultra High Affinity and Reversibility of the Calmodulin–Calmodulin Binding Peptide Interaction. Journal of Molecular Biology, 2015, 427, 2707-2725.	2.0	18
61	Prolactin Receptor–Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity. Cancer Research, 2017, 77, 1684-1696.	0.4	16
62	Generating Conformation and Complex-Specific Synthetic Antibodies. Methods in Molecular Biology, 2017, 1575, 93-119.	0.4	15
63	Specific Recognition of a Single-Stranded RNA Sequence by a Synthetic Antibody Fragment. Journal of Molecular Biology, 2016, 428, 4100-4114.	2.0	11
64	New Tricks for an Old Dimer. Science, 2014, 344, 703-704.	6.0	10
65	A polar ring endows improved specificity to an antibody fragment. Protein Science, 2016, 25, 1290-1298.	3.1	10
66	Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure. PLoS ONE, 2010, 5, e13960.	1.1	9
67	Probing the Functions of the Paramyxovirus Glycoproteins F and HN with a Panel of Synthetic Antibodies. Journal of Virology, 2014, 88, 11713-11725.	1.5	9
68	Engineering Synthetic Antibody Inhibitors Specific for LD2 or LD4 Motifs of Paxillin. Journal of Molecular Biology, 2015, 427, 2532-2547.	2.0	9
69	The structure of the C-terminal domain of the nucleoprotein from the Bundibugyo strain of the Ebola virus in complex with a pan-specific synthetic Fab. Acta Crystallographica Section D: Structural Biology, 2018, 74, 681-689.	1.1	9
70	Engineered Ultra-High Affinity Synthetic Antibodies for SARS-CoV-2 Neutralization and Detection. Journal of Molecular Biology, 2021, 433, 166956.	2.0	9
71	Recognition of an α-helical hairpin in P22 large terminase by a synthetic antibody fragment. Acta Crystallographica Section D: Structural Biology, 2020, 76, 876-888.	1.1	5
72	Quaternary structure independent folding of voltage-gated ion channel pore domain subunits. Nature Structural and Molecular Biology, 2022, 29, 537-548.	3.6	5

ANTHONY A KOSSIAKOFF

#	Article	IF	CITATIONS
73	The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Structure, 2016, 24, 1936-1946.	1.6	4
74	Targeted rescue of cancer-associated IDH1 mutant activity using an engineered synthetic antibody. Scientific Reports, 2017, 7, 556.	1.6	4
75	Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry, 2019, 58, 2996-3004.	1.2	4
76	An engineered ultraâ€high affinity Fabâ€Protein G pair enables a modular antibody platform with multifunctional capability. Protein Science, 2020, 29, 141-156.	3.1	4
77	Inhibition of Cancer Cell Adhesion, Migration and Proliferation by a Bispecific Antibody that Targets two Distinct Epitopes on αv Integrins. Journal of Molecular Biology, 2021, 433, 167090.	2.0	2
78	Synthetic Antibodies Detect Distinct Cellular States of Chromosome Passenger Complex Proteins. Journal of Molecular Biology, 2022, 434, 167602.	2.0	2
79	Structure of the rhodopsin–rhodopsin kinase complex defines the rules of engagement between G proteinâ€coupled receptors (GPCRs) and GPCR kinases. FASEB Journal, 2021, 35, .	0.2	1
80	Generation of Synthetic Antibody Fragments to Detergent Solubilized Membrane Proteins. Springer Protocols, 2017, , 231-243.	0.1	0
81	Reply to Kang and Brooks: Comment on the calculations in protein thermodynamics. Journal of Biological Chemistry, 2018, 293, 5063.	1.6	0
82	Structural Insights into PLCÎμ: Discovery of an Integrated RA1 Domain and Novel Regulatory Elements. FASEB Journal, 2021, 35, .	0.2	0
83	Validation of Recombinant Antibodies Against Human Transcription Factors. FASEB Journal, 2015, 29, 571.13.	0.2	0
84	Engineering of a synthetic antibody fragment for structural and functional studies of K+ channels. Journal of General Physiology, 2022, 154, .	0.9	0
85	Structural Insights into Phospholipase Cε. FASEB Journal, 2022, 36, .	0.2	Ο