
Larissa Nazarenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699856/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 423-428.	3.3	1,148
2	Efficacy of climate forcings. Journal of Geophysical Research, 2005, 110, .	3.3	1,104
3	Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. Journal of Climate, 2006, 19, 153-192.	1.2	832
4	Earth's Energy Imbalance: Confirmation and Implications. Science, 2005, 308, 1431-1435.	6.0	728
5	Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems, 2014, 6, 141-184.	1.3	597
6	Climate forcings in Goddard Institute for Space Studies SI2000 simulations. Journal of Geophysical Research, 2002, 107, ACL 2-1.	3.3	302
7	GISSâ€E2.1: Configurations and Climatology. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002025.	1.3	234
8	Climate simulations for $1880 \hat{a} \in 2003$ with GISS modelE. Climate Dynamics, 2007, 29, 661-696.	1.7	227
9	Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2653-2689.	1.9	150
10	Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.	1.9	149
11	The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model. Journal of Climate, 2012, 25, 4641-4659.	1.2	148
12	CMIP5 historical simulations (1850–2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 2014, 6, 441-478.	1.3	133
13	Future climate change under RCP emission scenarios with GISS <scp>M</scp> odelE2. Journal of Advances in Modeling Earth Systems, 2015, 7, 244-267.	1.3	112
14	Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change, 2021, 11, 207-212.	8.1	108
15	Irrigation as an historical climate forcing. Climate Dynamics, 2015, 44, 1715-1730.	1.7	103
16	Implications for climate sensitivity from the response to individual forcings. Nature Climate Change, 2016, 6, 386-389.	8.1	94
17	Historical (1850–2014) Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1 Contribution to CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001978.	1.3	69
18	Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7948-7961.	1.2	65

LARISSA NAZARENKO

#	Article	IF	CITATIONS
19	LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations. Bulletin of the American Meteorological Society, 2019, 100, 2551-2570.	1.7	65
20	Modeling the QBO—Improvements resulting from higherâ€model vertical resolution. Journal of Advances in Modeling Earth Systems, 2016, 8, 1092-1105.	1.3	51
21	CMIP6 Historical Simulations (1850–2014) With GISSâ€E2.1. Journal of Advances in Modeling Earth Systems, 2021, 13, e2019MS002034.	1.3	49
22	Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
23	Antarctic Glacial Melt as a Driver of Recent Southern Ocean Climate Trends. Geophysical Research Letters, 2020, 47, e2019GL086892.	1.5	34
24	Do responses to different anthropogenic forcings add linearly in climate models?. Environmental Research Letters, 2015, 10, 104010.	2.2	32
25	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—Model Structure, Climatology, Variability, and Climate Sensitivity. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032204.	1.2	32
26	Natural air–sea flux of CO2 in simulations of the NASA-GISS climate model: Sensitivity to the physical ocean model formulation. Ocean Modelling, 2013, 66, 26-44.	1.0	27
27	Distinct Influences of Land Cover and Land Management on Seasonal Climate. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12017-12039.	1.2	26
28	Eddy Compensation Dampens Southern Ocean Sea Surface Temperature Response to Westerly Wind Trends. Geophysical Research Letters, 2019, 46, 4365-4377.	1.5	26
29	Interactive nature of climate change and aerosol forcing. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3457-3480.	1.2	25
30	Climate Change Amplification of Natural Drought Variability: The Historic Mid-Twentieth-Century North American Drought in a Warmer World. Journal of Climate, 2019, 32, 5417-5436.	1.2	23
31	Future Climate Change Under SSP Emission Scenarios With GISSâ€E2.1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	22
32	Representation of Modes of Variability in Six U.S. Climate Models. Journal of Climate, 2020, 33, 7591-7617.	1.2	21
33	Multicentury Instability of the Atlantic Meridional Circulation in Rapid Warming Simulations With GISS ModelE2. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6331-6355.	1.2	19
34	Divergent Regional Climate Consequences of Maintaining Current Irrigation Rates in the 21st Century. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031814.	1.2	17
35	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150â€Year, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	1.5	16
36	Ocean–atmosphere interactions modulate irrigation's climate impacts. Earth System Dynamics, 2016, 7, 863-876.	2.7	15

#	Article	IF	CITATIONS
37	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—2. Validation of Large cale Transport and Evaluation of Climate Response. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033151.	1.2	14
38	Dynamical and Trace Gas Responses of the Quasiâ€Biennial Oscillation to Increased CO ₂ . Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034151.	1.2	11
39	Nonâ€Monotonic Response of the Climate System to Abrupt CO ₂ Forcing. Geophysical Research Letters, 2021, 48, e2020GL090861.	1.5	10
40	Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034108.	1.2	6
41	Response of the Quasiâ€Biennial Oscillation to Historical Volcanic Eruptions. Geophysical Research Letters, 2021, 48, e2021GL095412.	1.5	5
42	The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period. Atmospheric Chemistry and Physics, 2021, 21, 7395-7407.	1.9	0