Mickael L Perrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-molecule transistors. Chemical Society Reviews, 2015, 44, 902-919.	18.7	282
2	Large tunable image-charge effects in single-molecule junctions. Nature Nanotechnology, 2013, 8, 282-287.	15.6	258
3	Large negative differential conductance in single-molecule break junctions. Nature Nanotechnology, 2014, 9, 830-834.	15.6	170
4	A gate-tunable single-molecule diode. Nanoscale, 2016, 8, 8919-8923.	2.8	76
5	Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein Journal of Nanotechnology, 2015, 6, 1558-1567.	1.5	69
6	Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. Nano Letters, 2018, 18, 5981-5988.	4.5	69
7	A reference-free clustering method for the analysis of molecular break-junction measurements. Applied Physics Letters, 2019, 114, .	1.5	57
8	Influence of the Chemical Structure on the Stability and Conductance of Porphyrin Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2011, 50, 11223-11226.	7.2	56
9	Statistical analysis of singleâ€molecule breaking traces. Physica Status Solidi (B): Basic Research, 2013, 250, 2431-2436.	0.7	56
10	Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes. Journal of the American Chemical Society, 2018, 140, 1313-1326.	6.6	56
11	Single-Molecule Resonant Tunneling Diode. Journal of Physical Chemistry C, 2015, 119, 5697-5702.	1.5	46
12	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	7.3	46
13	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	11.1	44
14	C–Au Covalently Bonded Molecular Junctions Using Nonprotected Alkynyl Anchoring Groups. Journal of the American Chemical Society, 2016, 138, 8465-8469.	6.6	42
15	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	7.3	36
16	Charge transport in a zinc–porphyrin single-molecule junction. Beilstein Journal of Nanotechnology, 2011, 2, 714-719.	1.5	31
17	In-situ formation of one-dimensional coordination polymers in molecular junctions. Nature Communications, 2019, 10, 262.	5.8	30
18	Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 2021, 184, 331-339.	5.4	30

MICKAEL L PERRIN

#	Article	IF	CITATIONS
19	Charge transport through conjugated azomethine-based single molecules for optoelectronic applications. Organic Electronics, 2016, 34, 38-41.	1.4	28
20	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	0.7	26
21	Benchmark and application of unsupervised classification approaches for univariate data. Communications Physics, 2021, 4, .	2.0	19
22	Multiscale Approach to the Study of the Electronic Properties of Two Thiophene Curcuminoid Molecules. Chemistry - A European Journal, 2016, 22, 12808-12818.	1.7	18
23	Mechanical Tuning of Throughâ€Molecule Conductance in a Conjugated Calix[4]pyrrole. ChemistrySelect, 2018, 3, 6473-6478.	0.7	18
24	Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 2020, 22, 12849-12866.	1.3	17
25	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	5.2	17
26	Image effects in transport at metal-molecule interfaces. Journal of Chemical Physics, 2015, 143, 174106.	1.2	15
27	Design of an efficient coherent multi-site single-molecule rectifier. Physical Chemistry Chemical Physics, 2017, 19, 29187-29194.	1.3	14
28	Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy. Beilstein Journal of Nanotechnology, 2015, 6, 2477-2484.	1.5	12
29	Synthesis of 1,2-biphenylethane based single-molecule diodes. Organic and Biomolecular Chemistry, 2016, 14, 2439-2443.	1.5	11
30	High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning. Microsystems and Nanoengineering, 2022, 8, 19.	3.4	7
31	Spatially mapping thermal transport in graphene by an opto-thermal method. Npj 2D Materials and Applications, 2022, 6, .	3.9	6
32	Current-induced nanogap formation and graphitization in boron-doped diamond films. Applied Physics Letters, 2012, 101, 193106.	1.5	4