Stephen S Ferguson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699809/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment. Toxicological Sciences, 2012, 125, 157-174.	3.1	336
2	Incorporating Human Dosimetry and Exposure into High-Throughput <i>In Vitro</i> Toxicity Screening. Toxicological Sciences, 2010, 117, 348-358.	3.1	222
3	A Novel Distal Enhancer Module Regulated by Pregnane X Receptor/Constitutive Androstane Receptor Is Essential for the Maximal Induction of CYP2B6 Gene Expression. Journal of Biological Chemistry, 2003, 278, 14146-14152.	3.4	195
4	Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted <i>In Vitro</i> Bioactivity to Inform Chemical Toxicity Testing. Toxicological Sciences, 2015, 148, 121-136.	3.1	190
5	Human CYP2C8 Is Transcriptionally Regulated by the Nuclear Receptors Constitutive Androstane Receptor, Pregnane X Receptor, Glucocorticoid Receptor, and Hepatic Nuclear Factor 4α. Molecular Pharmacology, 2005, 68, 747-757.	2.3	185
6	In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicology in Vitro, 2018, 47, 213-227.	2.4	162
7	Regulation of HumanCYP2C9by the Constitutive Androstane Receptor: Discovery of a New Distal Binding Site. Molecular Pharmacology, 2002, 62, 737-746.	2.3	149
8	An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. Environmental Science & Technology, 2017, 51, 10786-10796.	10.0	120
9	From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. Toxicological Sciences, 2017, 159, 124-136.	3.1	85
10	3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clinical and Translational Science, 2021, 14, 1659-1680.	3.1	77
11	A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes. Journal of Pharmaceutical Sciences, 2012, 101, 3989-4002.	3.3	74
12	The Power of Resolution: Contextualized Understanding of Biological Responses to Liver Injury Chemicals Using High-throughput Transcriptomics and Benchmark Concentration Modeling. Toxicological Sciences, 2019, 169, 553-566.	3.1	54
13	Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 329-346.	6.5	53
14	Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures. Drug Metabolism and Disposition, 2016, 44, 1463-1479.	3.3	49
15	Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber. Environmental Research, 2019, 169, 163-172.	7.5	48
16	Evaluation of 5-day In Vivo Rat Liver and Kidney With High-throughput Transcriptomics for Estimating Benchmark Doses of Apical Outcomes. Toxicological Sciences, 2020, 176, 343-354.	3.1	45
17	High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency Characterization. Toxicological Sciences, 2021, 181, 199-214.	3.1	39
18	How similar is similar enough? A sufficient similarity case study with Ginkgo biloba extract. Food and Chemical Toxicology, 2018, 118, 328-339.	3.6	32

#	Article	IF	CITATIONS
19	Evaluation and Optimization of Pharmacokinetic Models for <i>in Vitro</i> to <i>in Vivo</i> Extrapolation of Estrogenic Activity for Environmental Chemicals. Environmental Health Perspectives, 2018, 126, 97001.	6.0	31
20	Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology, 2021, 74, 3486-3496.	7.3	29
21	High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. Npj Systems Biology and Applications, 2021, 7, 7.	3.0	28
22	Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicological Sciences, 2021, 184, 154-169.	3.1	26
23	Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochemical Pharmacology, 2021, 184, 114368.	4.4	19
24	A Modern Genotoxicity Testing Paradigm: Integration of the High-Throughput CometChip® and the TGx-DDI Transcriptomic Biomarker in Human HepaRGâ"¢ Cell Cultures. Frontiers in Public Health, 2021, 9, 694834.	2.7	17
25	Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicological Sciences, 2022, 188, 143-152.	3.1	17
26	Flow cytometric micronucleus assay and TGx-DDI transcriptomic biomarker analysis of ten genotoxic and non-genotoxic chemicals in human HepaRGâ,,¢ cells. Genes and Environment, 2020, 42, 5.	2.1	16
27	Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicology in Vitro, 2018, 53, 233-244.	2.4	15
28	Evaluating Sufficient Similarity of Botanical Dietary Supplements: Combining Chemical and In Vitro Biological Data. Toxicological Sciences, 2019, 172, 316-329.	3.1	15
29	Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements. Food and Chemical Toxicology, 2018, 121, 194-202.	3.6	14
30	Organotypic 3D HepaRG Liver Model for Assessment of Drug-Induced Cholestasis. Methods in Molecular Biology, 2019, 1981, 313-323.	0.9	13
31	Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data. Frontiers in Genetics, 2020, 11, 594.	2.3	13
32	Benchmark Concentrations for Untargeted Metabolomics Versus Transcriptomics for Liver Injury Compounds in <i>In Vitro</i> Liver Models. Toxicological Sciences, 2021, 181, 175-186.	3.1	11
33	Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicology in Vitro, 2021, 73, 105109.	2.4	10
34	Systems biology for organotypic cell cultures. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 301-310.	1.5	10
35	Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Archives of Toxicology, 2022, 96, 1975-1987.	4.2	10
36	Deep Learning Image Analysis of High-Throughput Toxicology Assay Images. SLAS Discovery, 2022, 27, 29-38.	2.7	3

#	Article	IF	CITATIONS
37	Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicology in Vitro, 2022, 83, 105412.	2.4	3