Trai-Ming Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699769/publications.pdf

Version: 2024-02-01

71532 61857 6,429 119 43 citations h-index papers

76 g-index 122 122 122 6221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine, 2022, 40, 2299-2310.	1.7	2
2	Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathogens, 2022, 18, e1010469.	2.1	10
3	Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Frontiers in Immunology, 2022, 13, .	2.2	10
4	Regulation of autophagy, glucose uptake, and glycolysis under dengue virus infection. Kaohsiung Journal of Medical Sciences, 2020, 36, 911-919.	0.8	16
5	Dengue Nonstructural Protein 1 Maintains Autophagy through Retarding Caspase-Mediated Cleavage of Beclin-1. International Journal of Molecular Sciences, 2020, 21, 9702.	1.8	18
6	Roles of Macrophage Migration Inhibitory Factor in Dengue Pathogenesis: From Pathogenic Factor to Therapeutic Target. Microorganisms, 2020, 8, 891.	1.6	6
7	Combination of Modified NS1 and NS3 as a Novel Vaccine Strategy against Dengue Virus Infection. Journal of Immunology, 2019, 203, 1909-1917.	0.4	13
8	Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathogens, 2019, 15, e1007625.	2.1	112
9	Inhibition of autophagy protects against sepsis by concurrently attenuating the cytokine storm and vascular leakage. Journal of Infection, 2019, 78, 178-186.	1.7	18
10	Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Scientific Reports, 2018, 8, 489.	1.6	91
11	Macrophage Migration Inhibitory Factor-Induced Autophagy Contributes to Thrombin-Triggered Endothelial Hyperpermeability in Sepsis. Shock, 2018, 50, 103-111.	1.0	19
12	Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. Journal of Biomedical Science, 2018, 25, 58.	2.6	77
13	Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathogens, 2018, 14, e1007033.	2.1	61
14	Minocycline suppresses dengue virus replication by down-regulation of macrophage migration inhibitory factor-induced autophagy. Antiviral Research, 2018, 155, 28-38.	1.9	18
15	Honeysuckle aqueous extract and induced let-7a suppress dengue virus type 2 replication and pathogenesis. Journal of Ethnopharmacology, 2017, 198, 109-121.	2.0	32
16	Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. Journal of Immunology, 2017, 199, 2834-2844.	0.4	49
17	Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Scientific Reports, 2017, 7, 6975.	1.6	59
18	In vitro Assays for Measuring Endothelial Permeability by Transwells and Electrical Impedance Systems. Bio-protocol, 2017, 7, e2273.	0.2	11

#	Article	IF	Citations
19	Anti-dengue virus nonstructural protein 1 antibodies contribute to platelet phagocytosis by macrophages. Thrombosis and Haemostasis, 2016, 115, 646-656.	1.8	27
20	Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Neglected Tropical Diseases, 2016, 10, e0004828.	1.3	80
21	Dengue Virus Nonstructural Protein 1–Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. Journal of Immunology, 2016, 196, 1218-1226.	0.4	40
22	Pathogenic Roles of Macrophage Migration Inhibitory Factor during Dengue Virus Infection. Mediators of Inflammation, 2015, 2015, 1-7.	1.4	28
23	Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open, 2015, 4, 244-252.	0.6	35
24	Macrophage migration inhibitory factor has a permissive role in concanavalin A-induced cell death of human hepatoma cells through autophagy. Cell Death and Disease, 2015, 6, e2008-e2008.	2.7	26
25	Correlation Between Serum Levels of Anti-Endothelial Cell Autoantigen and Anti-Dengue Virus Nonstructural Protein 1 Antibodies in Dengue Patients. American Journal of Tropical Medicine and Hygiene, 2015, 92, 989-995.	0.6	15
26	Ripple structure-generated hybrid electrokinetics for on-chip mixing and separating of functionalized beads. Biomicrofluidics, 2014, 8, 061102.	1.2	6
27	Molecular Mimicry between Dengue Virus and Coagulation Factors Induces Antibodies To Inhibit Thrombin Activity and Enhance Fibrinolysis. Journal of Virology, 2014, 88, 13759-13768.	1.5	35
28	Macrophage Migration Inhibitory Factor Triggers Chemotaxis of CD74+CXCR2+ NKT Cells in Chemically Induced IFN-γ–Mediated Skin Inflammation. Journal of Immunology, 2014, 193, 3693-3703.	0.4	22
29	Protection against Dengue Virus Infection in Mice by Administration of Antibodies against Modified Nonstructural Protein 1. PLoS ONE, 2014, 9, e92495.	1.1	62
30	Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. Journal of the Formosan Medical Association, 2013, 112, 12-17.	0.8	31
31	Dengue virus infection induces autophagy: an in vivo study. Journal of Biomedical Science, 2013, 20, 65.	2.6	67
32	Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. Journal of Biomedical Science, 2013, 20, 42.	2.6	37
33	Propolis inhibits TGF-β1-induced epithelial–mesenchymal transition in human alveolar epithelial cells via PPARγ activation. International Immunopharmacology, 2013, 15, 565-574.	1.7	40
34	Anti–Dengue Virus Nonstructural Protein 1 Antibodies Cause NO-Mediated Endothelial Cell Apoptosis via Ceramide-Regulated Glycogen Synthase Kinase-3β and NF-κB Activation. Journal of Immunology, 2013, 191, 1744-1752.	0.4	34
35	Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association, 2013, 112, 3-11.	0.8	67
36	Current progress in dengue vaccines. Journal of Biomedical Science, 2013, 20, 37.	2.6	59

3

#	Article	IF	Citations
37	Absence of CXCL10 Aggravates Herpes Stromal Keratitis with Reduced Primary Neutrophil Influx in Mice. Journal of Virology, 2013, 87, 8502-8510.	1.5	30
38	Antibodies against thrombin in dengue patients contain both anti-thrombotic and pro-fibrinolytic activities. Thrombosis and Haemostasis, 2013, 110, 358-365.	1.8	21
39	Dengue Virus Enhances Thrombomodulin and ICAM-1 Expression through the Macrophage Migration Inhibitory Factor Induction of the MAPK and PI3K Signaling Pathways. PLoS ONE, 2013, 8, e55018.	1.1	26
40	Dengue virus-induced antibodies against thrombin and inhibit its activity. International Journal of Infectious Diseases, 2012, 16, e76.	1.5	0
41	Macrophage migration inhibitory factor induces ICAM-1and thrombomobulin expression in vitro. Thrombosis Research, 2012, 129, 43-49.	0.8	9
42	P034 Inhibition of macrophage migration inhibitory factor reduces dengue virus replication. Cytokine, 2012, 59, 529.	1.4	0
43	Macrophage Migration Inhibitory Factor Induces Autophagy via Reactive Oxygen Species Generation. PLoS ONE, 2012, 7, e37613.	1.1	61
44	Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. Journal of Infection, 2012, 64, 325-334.	1.7	71
45	Dengue Virus-Induced Autoantibodies Bind to Plasminogen and Enhance Its Activation. Journal of Immunology, 2011, 187, 6483-6490.	0.4	45
46	Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Experimental Biology and Medicine, 2011, 236, 515-523.	1.1	104
47	Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine, 2011, 54, 222-231.	1.4	70
48	Zebrafish Sp1-like protein is structurally and functionally comparable to human Sp1. Protein Expression and Purification, 2011, 76, 36-43.	0.6	5
49	The envelope glycoprotein domain III of dengue virus type 2 induced the expression of anticoagulant molecules in endothelial cells. Molecular and Cellular Biochemistry, 2010, 342, 215-221.	1.4	12
50	The dengue virus envelope protein induced PAI-1 gene expression via MEK/ERK pathways. Thrombosis and Haemostasis, 2010, 104, 1219-1227.	1.8	16
51	Characteristic of Dengue Disease in Taiwan: 2002–2007. American Journal of Tropical Medicine and Hygiene, 2010, 82, 731-739.	0.6	67
52	Annexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodies. Molecular Immunology, 2010, 47, 1000-1009.	1.0	35
53	Deletion of the C-Terminal Region of Dengue Virus Nonstructural Protein 1 (NS1) Abolishes Anti-NS1-Mediated Platelet Dysfunction and Bleeding Tendency. Journal of Immunology, 2009, 183, 1797-1803.	0.4	66
54	Proteomic Analysis of Endothelial Cell Autoantigens Recognized by Anti-Dengue Virus Nonstructural Protein 1 Antibodies. Experimental Biology and Medicine, 2009, 234, 63-73.	1.1	63

#	Article	IF	CITATIONS
55	Dengue virus induces thrombomodulin expression in human endothelial cells and monocytes in vitro. Journal of Infection, 2009, 58, 368-374.	1.7	31
56	Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Molecular Immunology, 2009, 47, 398-406.	1.0	82
57	Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. Journal of Infection, 2008, 56, 143-150.	1.7	42
58	Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model. Laboratory Investigation, 2008, 88, 1079-1089.	1.7	67
59	Autophagic machinery activated by dengue virus enhances virus replication. Virology, 2008, 374, 240-248.	1.1	312
60	Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-8.	3.0	17
61	Patient and Mouse Antibodies against Dengue Virus Nonstructural Protein 1 Cross-React with Platelets and Cause Their Dysfunction or Depletion. American Journal of Infectious Diseases, 2008, 4, 69-75.	0.1	14
62	Immunopathogenesis of Dengue Hemorrhagic Fever. American Journal of Infectious Diseases, 2008, 4, 1-9.	0.1	18
63	Dengue Virus Infection Induced NF-κB-dependent Macrophage Migration Inhibitory Factor Production. American Journal of Infectious Diseases, 2008, 4, 22-31.	0.1	5
64	Epitope Mapping of Dengue-Virus-Enhancing Monoclonal-Antibody Using Phage Display Peptide Library. American Journal of Infectious Diseases, 2008, 4, 76-84.	0.1	7
65	C-Terminal Region of Dengue Virus Nonstructural Protein 1 Is Involved in Endothelial Cell Cross-Reactivity via Molecular Mimicry. American Journal of Infectious Diseases, 2008, 4, 85-91.	0.1	14
66	Molecular Mimicry between SARS Coronavirus Spike Protein and Human Protein., 2007,,.		3
67	Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Research, 2007, 126, 216-225.	1.1	43
68	Enterovirus 71 infection induces Fas ligand expression and apoptosis of Jurkat cells. Journal of Medical Virology, 2006, 78, 780-786.	2.5	40
69	The Dual-Specific Binding of Dengue Virus and Target Cells for the Antibody-Dependent Enhancement of Dengue Virus Infection. Journal of Immunology, 2006, 176, 2825-2832.	0.4	155
70	MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. Journal of General Virology, 2006, 87, 3623-3630.	1.3	165
71	CORRELATION OF SERUM LEVELS OF MACROPHAGE MIGRATION INHIBITORY FACTOR WITH DISEASE SEVERITY AND CLINICAL OUTCOME IN DENGUE PATIENTS. American Journal of Tropical Medicine and Hygiene, 2006, 74, 142-147.	0.6	163
72	VOLUME REPLACEMENT IN INFANTS WITH DENGUE HEMORRHAGIC FEVER/DENGUE SHOCK SYNDROME. American Journal of Tropical Medicine and Hygiene, 2006, 74, 684-691.	0.6	34

#	Article	IF	CITATIONS
73	Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. American Journal of Tropical Medicine and Hygiene, 2006, 74, 142-7.	0.6	78
74	Volume replacement in infants with dengue hemorrhagic fever/dengue shock syndrome. American Journal of Tropical Medicine and Hygiene, 2006, 74, 684-91.	0.6	14
75	Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clinical and Experimental Immunology, 2005, 141, 500-508.	1.1	56
76	The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochemical Pharmacology, 2005, 69, 307-318.	2.0	121
77	Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Research, 2005, 67, 31-37.	1.9	77
78	Type I interferons protect mice against enterovirus 71 infection. Journal of General Virology, 2005, 86, 3263-3269.	1.3	142
79	Suckling Mice Were Used to Detect Infectious Dengue-2 Viruses by Intracerebral Injection of the Full-Length RNA Transcript. Intervirology, 2005, 48, 161-166.	1.2	22
80	Expression of Cytokine, Chemokine, and Adhesion Molecules during Endothelial Cell Activation Induced by Antibodies against Dengue Virus Nonstructural Protein 1. Journal of Immunology, 2005, 174, 395-403.	0.4	128
81	ASSOCIATION BETWEEN SEX, NUTRITIONAL STATUS, SEVERITY OF DENGUE HEMORRHAGIC FEVER, AND IMMUNE STATUS IN INFANTS WITH DENGUE HEMORRHAGIC FEVER. American Journal of Tropical Medicine and Hygiene, 2005, 72, 370-374.	0.6	81
82	Antibody-Mediated Endothelial Cell Damage Via Nitric Oxide. Current Pharmaceutical Design, 2004, 10, 213-221.	0.9	35
83	A Mouse-Adapted Enterovirus 71 Strain Causes Neurological Disease in Mice after Oral Infection. Journal of Virology, 2004, 78, 7916-7924.	1.5	241
84	Human endothelial cell activation and apoptosis induced by enterovirus 71 infection. Journal of Medical Virology, 2004, 74, 597-603.	2.5	44
85	Dengue Hemorrhagic Fever in Infants: A Study of Clinical and Cytokine Profiles. Journal of Infectious Diseases, 2004, 189, 221-232.	1.9	233
86	High concentrations of circulating macrophage migration inhibitory factor in patients with severe blunt trauma: Is serum macrophage migration inhibitory factor concentration a valuable prognostic factor?. Critical Care Medicine, 2004, 32, 734-739.	0.4	19
87	Deoxyribonuclease-Inhibitory antibodies in systemic lupus erythematosus. Journal of Biomedical Science, 2003, 10, 544-551.	2.6	41
88	Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. Journal of Medical Virology, 2003, 69, 82-90.	2.5	181
89	Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. Journal of Medical Virology, 2003, 70, 610-616.	2.5	44
90	Deoxyribonuclease-inhibitory antibodies in systemic lupus erythematosus. Journal of Biomedical Science, 2003, 10, 544-51.	2.6	31

#	Article	IF	Citations
91	Virus Replication and Cytokine Production in Dengue Virus-Infected Human B Lymphocytes. Journal of Virology, 2002, 76, 12242-12249.	1.5	84
92	Endothelial Cell Apoptosis Induced by Antibodies Against Dengue Virus Nonstructural Protein 1 Via Production of Nitric Oxide. Journal of Immunology, 2002, 169, 657-664.	0.4	163
93	Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Research, 2002, 56, 93-96.	1.9	115
94	Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection. Journal of Medical Virology, 2002, 68, 241-252.	2.5	40
95	Overexpression of HER-2/neu enhances the sensitivity of human bladder cancer cells to urinary isoflavones. European Journal of Cancer, 2001, 37, 1413-1418.	1.3	11
96	Immunopathogenesis of dengue virus infection. Journal of Biomedical Science, 2001, 8, 377-388.	2.6	255
97	Generation of IgM anti-platelet autoantibody in dengue patients. Journal of Medical Virology, 2001, 63, 143-149.	2.5	143
98	Activation of coagulation and fibrinolysis during dengue virus infection. Journal of Medical Virology, 2001, 63, 247-251.	2.5	84
99	Generation of IgM anti-platelet autoantibody in dengue patients. , 2001, 63, 143.		1
100	Generation of IgM antiâ€platelet autoantibody in dengue patients. Journal of Medical Virology, 2001, 63, 143-149.	2.5	1
101	Immunopathogenesis of dengue virus infection. , 2001, 8, 377.		11
102	Infection of five human liver cell lines by dengue-2 virus., 2000, 60, 425-431.		79
103	Involvement of Oxidative Stress, NF-IL-6, and RANTES Expression in Dengue-2-Virus-Infected Human Liver Cells. Virology, 2000, 276, 114-126.	1.1	89
104	Manifestation of thrombocytopenia in dengue-2-virus-infected mice. Journal of General Virology, 2000, 81, 2177-2182.	1.3	125
105	Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production American Journal of Tropical Medicine and Hygiene, 2000, 63, 71-75.	0.6	143
106	Alpha 1-acid glycoprotein-induced tumor necrosis factor- \hat{l}_{\pm} secretion of human monocytes is enhanced by serum binding proteins and depends on protein tyrosine kinase activation. Immunopharmacology, 1999, 41, 21-29.	2.0	23
107	The dynamic responses of pro-inflammatory and anti-inflammatory cytokines of human mononuclear cells induced by uromodulin. Life Sciences, 1999, 65, 2581-2590.	2.0	17
108	Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clinical and Experimental Immunology, 1997, 110, 35-40.	1.1	32

#	Article	IF	CITATIONS
109	Detection of lipopolysaccharide binding peptides by the use of a lipopolysaccharide-coated piezoelectric crystal biosensor. Analytica Chimica Acta, 1997, 340, 49-54.	2.6	27
110	Implications of Urinary Basic Fibroblast Growth Factor Excretion in Patients with Urothelial Carcinoma. Clinical Science, 1996, 90, 127-133.	1.8	10
111	Lewis Rats Given Antibodies against Denatured Acetylcholine Receptor Become Resistant to Induction of Experimental Autoimmune Myasthenia Gravis. Cellular Immunology, 1996, 172, 10-20.	1.4	18
112	Effects of alpha 1-acid glycoprotein on tissue factor expression and tumor necrosis factor secretion in human monocytes. Immunopharmacology, 1996, 34, 139-145.	2.0	17
113	Influence of Immunological Fine-specificity on the Induction of Experimental Myasthenia Gravis. Annals of the New York Academy of Sciences, 1993, 681, 179-197.	1.8	3
114	EXACERBATED MUSCLE DYSFUNCTION BY PROCAINAMIDE IN RATS WITH EXPERIMENTAL MYASTHENIA GRAVIS. Drug and Chemical Toxicology, 1992, 15, 53-65.	1.2	3
115	Skewed B cell VH family repertoire in Bcl-2- transgenic mice. International Immunology, 1991, 3, 1329-1333.	1.8	9
116	Clonotypic analysis of anti-acetylcholine receptor antibodies from experimental autoimmune myasthenia gravis-sensitive Lewis rats and experimental autoimmune myasthenia gravis-resistant Wistar Furth rats. Journal of Immunology, 1991, 146, 663-70.	0.4	26
117	T cells reactive with a small synthetic peptide of the acetylcholine receptor can provide help for a clonotypically heterogeneous antibody response and subsequently impaired muscle function. Journal of Immunology, 1990, 144, 1654-60.	0.4	31
118	Clonotypic analysis of anti-acetylcholine receptor antibodies produced against native and denatured antigen. Journal of Neuroimmunology, 1989, 24, 133-142.	1.1	14
119	Influence of T cell specificity on the heterogeneity and disease-causing capability of antibody against the acetylcholine receptor. Journal of Neuroimmunology, 1987, 17, 17-34.	1.1	20