
Iva Pashkuleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869939/publications.pdf Version: 2024-02-01

IVA DACHKIII FVA

#	Article	IF	CITATIONS
1	Influence of Hyaluronan Density on the Behavior of Breast Cancer Cells with Different CD44 Expression. Advanced Healthcare Materials, 2022, 11, e2101309.	3.9	7
2	Antithrombotic and hemocompatible properties of nanostructured coatings assembled from block copolymers. Journal of Colloid and Interface Science, 2022, 608, 1608-1618.	5.0	5
3	Glycosaminoglycans as polyelectrolytes: implications in bioactivity and assembly of biomedical devices. International Materials Reviews, 2022, 67, 765-795.	9.4	5
4	Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112409.	2.5	20
5	RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomaterialia, 2022, 146, 187-196.	4.1	6
6	Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomaterialia, 2021, 119, 114-124.	4.1	30
7	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. Biomaterials Science, 2021, 9, 252-260.	2.6	13
8	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. Materials Science and Engineering C, 2021, 119, 111616.	3.8	7
9	Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. Materials Science and Engineering C, 2021, 121, 111813.	3.8	7
10	Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. CheM, 2021, 7, 2943-2964.	5.8	42
11	Expanding the Conformational Landscape of Minimalistic Tripeptides by Their <i>O</i> -Glycosylation. Journal of the American Chemical Society, 2021, 143, 19703-19710.	6.6	14
12	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird―Phenotype on Gastric Cancer Cells. Advanced Biology, 2020, 4, e2000122.	3.0	8
13	Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse. Nanoscale, 2020, 12, 19088-19092.	2.8	8
14	Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomaterialia, 2020, 112, 174-181.	4.1	13
15	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	3.7	21
16	Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. Journal of Materials Chemistry B, 2020, 8, 3880-3885.	2.9	31
17	Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules, 2020, 25, 795.	1.7	3
18	Gelatin micro―and nanocapsules obtained via sonochemical method. Journal of Applied Polymer Science, 2020, 137, 49584.	1.3	2

Ινα Ρασηκυίενα

#	Article	IF	CITATIONS
19	Mineralization of Layer-by-Layer Ultrathin Films Containing Microfluidic-Produced Hydroxyapatite Nanorods. Crystal Growth and Design, 2019, 19, 6351-6359.	1.4	6
20	Bioinspired baroplastic glycosaminoglycan sealants for soft tissues. Acta Biomaterialia, 2019, 87, 108-117.	4.1	16
21	Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chemical Science, 2019, 10, 2385-2390.	3.7	60
22	Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94.		2
23	Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058.	1.6	47
24	Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery. Biomacromolecules, 2018, 19, 2991-2999.	2.6	26
25	Tuning the Stiffness of Surfaces by Assembling Genetically Engineered Polypeptides with Tailored Amino Acid Sequence. Biomacromolecules, 2018, 19, 3401-3411.	2.6	6
26	Starâ€Like Glycosaminoglycans with Superior Bioactivity Assemble with Proteins into Microfibers. Chemistry - A European Journal, 2018, 24, 14341-14345.	1.7	7
27	Hydrogel Nanomaterials for Cancer Diagnosis and Therapy. , 2018, , 170-183.		3
28	Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annual Review of Biomedical Engineering, 2017, 19, 1-26.	5.7	227
29	Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. Journal of Materials Chemistry B, 2017, 5, 3103-3106.	2.9	19
30	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	2.1	76
31	Design of protein delivery systems by mimicking extracellular mechanisms for protection of growth factors. Acta Biomaterialia, 2017, 63, 283-293.	4.1	21
32	Biomimetics: Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior (Adv. Biosys. 7/2017). Advanced Biology, 2017, 1, .	3.0	0
33	Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. Advanced Biology, 2017, 1, e1700043.	3.0	34
34	Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2853-2863.	1.3	13
35	Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 496-507.	1.6	19
36	Influence of the sulfation degree of glycosaminoglycans on their multilayer assembly with poly-l-lysine. Colloids and Surfaces B: Biointerfaces, 2016, 145, 567-575.	2.5	22

Ινα Ρασηκυίενα

#	Article	IF	CITATIONS
37	Surfaces Mimicking Glycosaminoglycans Trigger Different Response of Stem Cells via Distinct Fibronectin Adsorption and Reorganization. ACS Applied Materials & Interfaces, 2016, 8, 28428-28436.	4.0	7
38	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	4.1	84
39	Functionality of surface-coupled oxidised glycosaminoglycans towards fibroblast adhesion. Journal of Bioactive and Compatible Polymers, 2016, 31, 191-207.	0.8	13
40	Following the enzymatic digestion of chondroitin sulfate by a simple GPC analysis. Analytica Chimica Acta, 2015, 885, 207-213.	2.6	19
41	Adhesion of Adipose-Derived Mesenchymal Stem Cells to Glycosaminoglycan Surfaces with Different Protein Patterns. ACS Applied Materials & Interfaces, 2015, 7, 10034-10043.	4.0	13
42	Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 63-76.	6.6	80
43	Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. Journal of the American Chemical Society, 2015, 137, 576-579.	6.6	260
44	Research Highlights: Highlights from the latest articles in nanomedicine. Nanomedicine, 2014, 9, 573-576.	1.7	0
45	Tunable nano-carriers from clicked glycosaminoglycan block copolymers. Journal of Materials Chemistry B, 2014, 2, 4177-4184.	2.9	23
46	Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomaterialia, 2013, 9, 5216-5225.	4.1	32
47	Surface microstructuring and protein patterning using hyaluronan derivatives. Microelectronic Engineering, 2013, 106, 21-26.	1.1	3
48	Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction. Acta Biomaterialia, 2013, 9, 8158-8166.	4.1	36
49	Interactions between Exogenous FGF-2 and Sulfonic Groups: in Situ Characterization and Impact on the Morphology of Human Adipose-Derived Stem Cells. Langmuir, 2013, 29, 7983-7992.	1.6	26
50	New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 2013, 9, 8167-8181.	4.1	65
51	GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. Journal of Materials Chemistry, 2012, 22, 19438.	6.7	27
52	Sulfonic groups induce formation of filopodia in mesenchymal stem cells. Journal of Materials Chemistry, 2012, 22, 7172.	6.7	25
53	Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2654-2667.	2.1	115
54	Synthesis and functionalization of superparamagnetic poly- É› -caprolactone microparticles for the selective isolation of subpopulations of human adipose-derived stem cells. Journal of the Royal Society Interface, 2011, 8, 896-908.	1.5	22

Ινα Ρασηκυίενα

#	Article	IF	CITATIONS
55	Sugars: burden or biomaterials of the future?. Journal of Materials Chemistry, 2010, 20, 8803.	6.7	28
56	Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. Journal of Materials Science: Materials in Medicine, 2010, 21, 21-32.	1.7	48
57	A new route to produce starchâ€based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 369-377.	2.1	58
58	Temperature as a Single Onâ€Off Parameter Controlling Nanoparticles Growing, Stabilization and Fast Disentanglement. Advanced Materials, 2010, 22, 4288-4292.	11.1	3
59	Highly porous and interconnected starch-based scaffolds: Production, characterization and surface modification. Materials Science and Engineering C, 2010, 30, 981-989.	3.8	25
60	Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: An in vitro study. Acta Biomaterialia, 2010, 6, 3704-3712.	4.1	51
61	Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.	5.2	289
62	Hydrophobicâ^'Electrostatic Balance Driving the LCST Offset Aggregationâ^'Redissolution Behavior of <i>N</i> -Alkylacrylamide-Based Ionic Terpolymers. Langmuir, 2010, 26, 5934-5941.	1.6	25
63	Surface phosphorylation of chitosan significantly improves osteoblastcell viability, attachment and proliferation. Journal of Materials Chemistry, 2010, 20, 483-491.	6.7	59
64	Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.	5.2	244
65	Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4091.	6.7	35
66	Surface Structural Investigation of Starchâ€Based Biomaterials. Macromolecular Bioscience, 2008, 8, 210-219.	2.1	29
67	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	2.1	131
68	The Effect of Chitosan on the In Vitro Biological Performance of Chitosanâ^'Poly(butylene succinate) Blends. Biomacromolecules, 2008, 9, 1139-1145.	2.6	54
69	Surface modification for natural-based biomedical polymers. , 2008, , 165-192.		1
70	Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. Journal of Materials Chemistry, 2007, 17, 4064.	6.7	112
71	Water Absorption and Degradation Characteristics of Chitosan-Based Polyesters and Hydroxyapatite Composites. Macromolecular Bioscience, 2007, 7, 354-363.	2.1	97
72	Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 2005, 16, 81-92.	1.7	44

Ινα Pashkuleva

#	Article	IF	CITATIONS
73	Learning from Nature How to Design Biomimetic Calcium-Phosphate Coatings. , 2004, , 123-150.		1
74	Effect of Processing Conditions on Mechanical Properties of Pretreated Gelatin Samples. International Journal of Polymeric Materials and Polymeric Biomaterials, 2002, 51, 103-132.	1.8	4
75	Surface Treatments and Pre-Calcification Routes to Enhance Cell Adhesion and Proliferation. , 2002, , 183-217.		4
76	Synthesis and Stereochemistry of 1,2,4,5-tetraarylimidazolidines. Journal of Chemical Research, 2001, 2001, 457-459.	0.6	1
77	Phase-transfer Catalysed Reactions of Mono- and disubstituted N-(benzylidene)-benzylamines with cinnamic acid derivatives. Journal of Chemical Research, 2000, 2000, 103-105.	0.6	2
78	A SIMPLE AND EFFICIENT SYNTHESIS OF Î ³ -AMINOBUTYRIC ACID (GABA) DERIVATIVES. Organic Preparations and Procedures International, 1999, 31, 232-236.	0.6	9
79	Preparation of Ethyl Esters of Protected 3-Aryl-2,3-Diaminopropanoic Acids by Reaction of Ethyl N-(Diphenylmethylene)glycinate and Azomethines ¹ . Synthetic Communications, 1997, 27, 1849-1856.	1.1	6