Fernando Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699269/publications.pdf

Version: 2024-02-01

59 2,072 20 45
papers citations h-index g-index

59 59 59 2548 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Gold nanodoughnut as an outstanding nanoheater for photothermal applications. Optics Express, 2022, 30, 125.	1.7	10
2	A label-free optical system with a nanohole array biosensor for discriminating live single cancer cells from normal cells. Nanophotonics, 2022, 11 , 315 - 328 .	2.9	3
3	Polarimetry analysis and optical contrast of Sb ₂ S ₃ phase change material. Optical Materials Express, 2022, 12, 1531.	1.6	14
4	Interlaboratory study on Sb2S3 interplay between structure, dielectric function, and amorphous-to-crystalline phase change for photonics. IScience, 2022, 25, 104377.	1.9	29
5	On the performance of a tunable grating-based high sensitivity unidirectional plasmonic sensor. Optics Express, 2021, 29, 13733.	1.7	14
6	Plasmonics: Enabling functionalities with novel materials. Journal of Applied Physics, 2021, 129, .	1.1	11
7	Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover. Advanced Materials, 2021, 33, e2100500.	11.1	18
8	Broadband Unidirectional Forward Scattering with High Refractive Index Nanostructures: Application in Solar Cells. Molecules, 2021, 26, 4421.	1.7	4
9	Design of Switchable On/Off Subpixels for Primary Color Generation Based on Molybdenum Oxide Gratings. Physics, 2021, 3, 655-663.	0.5	2
10	Highâ€Q Transparency Band in Allâ€Dielectric Metasurfaces Induced by a Quasi Bound State in the Continuum. Laser and Photonics Reviews, 2021, 15, 2000263.	4.4	72
11	Non-Absorbing Dielectric Materials for Surface-Enhanced Spectroscopies and Chiral Sensing in the UV. Nanomaterials, 2020, 10, 2078.	1.9	6
12	Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance. Journal of Applied Physics, 2020, 128, .	1.1	54
13	Nanoplasmonic Photothermal Heating and Near-Field Enhancements: A Comparative Survey of 19 Metals. Journal of Physical Chemistry C, 2020, 124, 7386-7395.	1.5	31
14	Sustainable and Tunable Mg/MgO Plasmon-Catalytic Platform for the Grand Challenge of SF ₆ Environmental Remediation. Nano Letters, 2020, 20, 3352-3360.	4.5	14
15	Multipolar Resonances with Designer Tunability Using <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Phase-Change Materials. Physical Review Applied, 2020, 13, .	1.5	16
16	Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene. Nanophotonics, 2020, 9, 4233-4252.	2.9	14
17	Polarimetric Detection of Chemotherapy-Induced Cancer Cell Death. Applied Sciences (Switzerland), 2019, 9, 2886.	1.3	4
18	Electromagnetic Effective Medium Modelling of Composites with Metal-Semiconductor Core-Shell Type Inclusions. Catalysts, 2019, 9, 626.	1.6	14

#	Article	IF	Citations
19	Brewster quasi bound states in the continuum in all-dielectric metasurfaces from single magnetic-dipole resonance meta-atoms. Scientific Reports, 2019, 9, 16048.	1.6	22
20	Gallium Polymorphs: Phaseâ€Dependent Plasmonics. Advanced Optical Materials, 2019, 7, 1900307.	3.6	25
21	Understanding Electromagnetic Interactions and Electron Transfer in Ga Nanoparticle–Graphene–Metal Substrate Sandwich Systems. Applied Sciences (Switzerland), 2019, 9, 4085.	1.3	5
22	The UV Plasmonic Behavior of Rhodium Tetrahedronsâ€"A Numerical Analysis. Applied Sciences (Switzerland), 2019, 9, 3947.	1.3	7
23	Optically addressing interaction of Mg/MgO plasmonic systems with hydrogen. Optics Express, 2019, 27, A197.	1.7	11
24	Dielectric function and plasmonic behavior of Ga(II) and Ga(III). Optical Materials Express, 2019, 9, 4050.	1.6	10
25	Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects. Nano Letters, 2018, 18, 1714-1723.	4.5	251
26	The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. Applied Sciences (Switzerland), 2018, 8, 2065.	1.3	7
27	Multiphase Gallium-based Nanoparticles for a Versatile Plasmonic Platform., 2018,,.		0
28	Plasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium. Applied Sciences (Switzerland), 2018, 8, 64.	1.3	75
29	On the scattering directionality of a dielectric particle dimer of High Refractive Index. Scientific Reports, 2018, 8, 7976.	1.6	19
30	Scattering directionality of high refractive index dielectric particles: a note for solar energy harvesting. , $2018, , .$		2
31	Scattering Directionality in the UV. , 2018, , .		0
32	Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration. Nature Communications, 2017, 8, 13910.	5.8	32
33	Light guiding and switching using eccentric core-shell geometries. Scientific Reports, 2017, 7, 11189.	1.6	18
34	The UV Plasmonic Behavior of Distorted Rhodium Nanocubes. Nanomaterials, 2017, 7, 425.	1.9	12
35	Modelling metal-dielectric core-shell nanoparticles with effective medium theories. , 2017, , .		2
36	Recent advances in metals for plasmonics applications in the UV range. , 2017, , .		O

#	Article	IF	CITATIONS
37	Polarimetric response of magnetodielectric core–shell nanoparticles: an analysis of scattering directionality and sensing. Nanotechnology, 2016, 27, 234002.	1.3	16
38	Directional Fano resonances in light scattering by a high refractive index dielectric sphere. Physical Review B, $2016, 94, .$	1.1	16
39	How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. Optics Express, 2016, 24, 20621.	1.7	62
40	Polarimetric techniques for determining morphology and optical features of high refractive index dielectric nanoparticle size. , 2016 , , .		0
41	Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horizons, 2016, 1, 75-80.	4.1	62
42	Using linear polarization to monitor nanoparticle purity. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162, 190-196.	1.1	15
43	Rhodium Nanoparticles for Ultraviolet Plasmonics. Nano Letters, 2015, 15, 1095-1100.	4.5	119
44	Small Dielectric Spheres with High Refractive Index as New Multifunctional Elements for Optical Devices. Scientific Reports, 2015, 5, 12288.	1.6	73
45	Frequency shift between near- and far-field scattering resonances in dielectric particles. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1638.	0.8	5
46	Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies. ACS Photonics, 2014, 1, 524-529.	3.2	181
47	Ultraviolet–Visible Plasmonic Properties of Gallium Nanoparticles Investigated by Variable-Angle Spectroscopic and Mueller Matrix Ellipsometry. ACS Photonics, 2014, 1, 582-589.	3.2	49
48	Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. Journal of Physical Chemistry C, 2013, 117, 13573-13584.	1.5	347
49	Ga–Mg Core–Shell Nanosystem for a Novel Full Color Plasmonics. Journal of Physical Chemistry C, 2011, 115, 13571-13576.	1.5	20
50	Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF. Journal of Physical Chemistry C, 2011, 115, 20419-20424.	1.5	52
51	Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate. Nano Letters, 2011, 11, 3531-3537.	4.5	122
52	Surface monitoring based on light scattering by metal nanosensors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2046-2058.	1.1	3
53	Light scattering resonances in small particles with electric and magnetic optical properties. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 117-136.	0.1	0
54	Nanoparticles with unconventional scattering properties: Size effects. Optics Communications, 2010, 283, 490-496.	1.0	22

#	Article	IF	CITATIONS
55	Distance limit of the directionality conditions for the scattering of nanoparticles. Metamaterials, 2010, 4, 15-23.	2.2	6
56	Light scattering by an array of electric and magnetic nanoparticles. Optics Express, 2010, 18, 10001.	1.7	47
57	Linear polarization degree for detecting magnetic properties of small particles. Optics Letters, 2010, 35, 4084.	1.7	13
58	Geometric Ray Tracing for Design of Customized Ablation in Laser in situ Keratomileusis. Journal of Refractive Surgery, 2002, 18, .	1.1	6
59	Geometric Ray Tracing Analysis of Visual Acuity After Laser in situ Keratomileusis. Journal of Refractive Surgery, 2001, 17, 305-309.	1.1	8