Benjamin Zeeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8699258/publications.pdf

Version: 2024-02-01

46 papers

1,358 citations

331670 21 h-index 36 g-index

48 all docs

48 docs citations

times ranked

48

1483 citing authors

#	Article	IF	Citations
1	Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 2014, 38, 28-39.	10.7	118
2	Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocolloids, 2015, 50, 27-36.	10.7	89
3	Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter, 2015, 11, 2228-2236.	2.7	85
4	Crosslinking of interfacial layers in multilayered oil-in-water emulsions using laccase: Characterization and pH-stability. Food Hydrocolloids, 2012, 27, 126-136.	10.7	78
5	Cross-Linking of Interfacial Layers Affects the Salt and Temperature Stability of Multilayered Emulsions Consisting of Fish Gelatin and Sugar Beet Pectin. Journal of Agricultural and Food Chemistry, 2011, 59, 10546-10555.	5.2	64
6	Controlling lipid digestion using enzyme-induced crosslinking ofÂbiopolymer interfacial layers in multilayer emulsions. Food Hydrocolloids, 2015, 46, 125-133.	10.7	64
7	Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions. Journal of Colloid and Interface Science, 2012, 387, 65-73.	9.4	63
8	Stabilization of food dispersions by enzymes. Food and Function, 2014, 5, 198.	4.6	55
9	Enzyme-Based Strategies for Structuring Foods for Improved Functionality. Annual Review of Food Science and Technology, 2017, 8, 21-34.	9.9	47
10	Influence of spray drying on the stability of food-grade solid lipid nanoparticles. Food Research International, 2019, 119, 741-750.	6.2	44
11	Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values. Colloids and Surfaces B: Biointerfaces, 2014, 117, 368-375.	5.0	42
12	Growth phenomena in biopolymer complexes composed of heated WPI and pectin. Food Hydrocolloids, 2018, 74, 53-61.	10.7	37
13	Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2014, 433, 196-203.	9.4	36
14	Theoretical and practical considerations in electrostatic depositioning of charged polymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	36
15	Modulation of the bitterness of pea and potato proteins by a complex coacervation method. Food and Function, 2018, 9, 2261-2269.	4.6	33
16	Electrostatic modulation and enzymatic cross-linking of interfacial layers impacts gastrointestinal fate of multilayer emulsions. Food Chemistry, 2015, 180, 257-264.	8.2	32
17	Transglutaminase-induced crosslinking of sodium caseinate stabilized oil droplets in oil-in-water emulsions. Food Research International, 2013, 54, 1712-1721.	6.2	30
18	Influence of layer thickness and composition of cross-linked multilayered oil-in-water emulsions on the release behavior of lutein. Food and Function, 2013, 4, 1457.	4.6	29

#	Article	IF	CITATIONS
19	Impact of Heat and Laccase on the pH and Freeze-Thaw Stability of Oil-in-Water Emulsions Stabilized by Adsorbed Biopolymer Nanoparticles. Food Biophysics, 2014, 9, 125-137.	3.0	27
20	Accessibility of transglutaminase to induce protein crosslinking in gelled food matrices - Influence of network structure. LWT - Food Science and Technology, 2017, 75, 271-278.	5.2	26
21	Formation of concentrated biopolymer particles composed of oppositely charged WPI and pectin for food applications. Journal of Dispersion Science and Technology, 2017, 38, 1258-1265.	2.4	25
22	Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2015, 449, 13-20.	9.4	21
23	Influence of droplet size on the antioxidant activity of rosemary extract loaded oil-in-water emulsions in mixed systems. Food and Function, 2015, 6, 793-804.	4.6	20
24	A non-invasive method for the characterisation of milk protein foams by image analysis. International Dairy Journal, 2016, 62, 1-9.	3.0	20
25	Influence of buffer on the preparation of multilayered oil-in-water emulsions stabilized by proteins and polysaccharides. Food Research International, 2013, 53, 325-333.	6.2	17
26	Formation of concentrated particles composed of oppositely charged biopolymers for food applications $\hat{a} \in \text{``impact}$ of processing conditions. Food Structure, 2016, 10, 10-20.	4.5	17
27	Accessibility of Transglutaminase to Induce Protein Crosslinking in Gelled Food Matrices - Impact of Membrane Structure. Food Biophysics, 2016, 11, 176-183.	3.0	17
28	Impact of laccase on the colour stability of structured oil-in-water emulsions. Food Research International, 2017, 97, 223-230.	6.2	16
29	Influence of droplet size on the antioxidant efficacy of oil-in-water emulsions loaded with rosemary in raw fermented sausages. European Food Research and Technology, 2017, 243, 1415-1427.	3.3	16
30	Protein/Polysaccharide Complexes to Stabilize Decane-in-Water Nanoemulsions. Food Biophysics, 2020, 15, 335-345.	3.0	16
31	Impact of food structure on the compatibility of heated WPI–pectin-complexes in meat dispersions. Food and Function, 2018, 9, 1647-1656.	4.6	14
32	The Impact of Esterification Degree and Source of Pectins on Complex Coacervation as a Tool to Mask the Bitterness of Potato Protein Isolates. Food Biophysics, 2020, 15, 376-385.	3.0	14
33	Solubilization of octane in electrostatically-formed surfactant–polymer complexes. Journal of Colloid and Interface Science, 2014, 417, 9-17.	9.4	13
34	Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition. Journal of Colloid and Interface Science, 2015, 455, 172-178.	9.4	13
35	Isothermal titration calorimetric analysis on solubilization of an octane oil-in-water emulsion in surfactant micelles and surfactant–anionic polymer complexes. Journal of Colloid and Interface Science, 2015, 438, 7-13.	9.4	13
36	Isothermal titration calorimetry as a tool to determine the thermodynamics of demicellization processes. Review of Scientific Instruments, 2012, 83, 105104.	1.3	12

#	Article	IF	CITATIONS
37	Solubilization of octane in cationic surfactant–anionic polymer complexes: Effect of polymer concentration and temperature. Journal of Colloid and Interface Science, 2015, 450, 332-338.	9.4	11
38	Modification of the interfacial properties of sodium caseinate using a commercial peptidase preparation from Geobacillus stearothermophilus. Food Hydrocolloids, 2018, 81, 60-70.	10.7	11
39	Mixing behaviour of WPI–pectin-complexes in meat dispersions: impact of biopolymer ratios. Food and Function, 2017, 8, 333-340.	4.6	8
40	Interaction between components of plant-based biopolymer systems. Current Opinion in Colloid and Interface Science, 2021, 56, 101524.	7.4	7
41	Initial Droplet Size Impacts pHâ€Induced Structural Changes in Phaseâ€Separated Polymer Dispersions. Journal of Food Science, 2016, 81, E1124-9.	3.1	6
42	Segregation Behavior of Polysaccharide–Polysaccharide Mixtures—A Feasibility Study. Gels, 2019, 5, 26.	4.5	4
43	Diffusion Behavior of Microbial Transglutaminase to Induce Protein Crosslinking in Oil-in-Water Emulsions. Journal of Dispersion Science and Technology, 2016, 37, 1745-1750.	2.4	3
44	Commercial pectins. , 2021, , 295-315.		3
45	Hofmeister Salts Affect Buildup of Thin Multilayer Films Surrounding Oil Droplets. Journal of Dispersion Science and Technology, 2014, 35, 799-807.	2.4	2
46	Osmotic Dehydration of Liposomal Dispersions: Influence of Particle Size and Electrostatic Deposition of Cold Water Fish Skin Gelatin. Food Biophysics, 2016, 11, 417-428.	3.0	1