
## Kathryn L Cottingham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8698223/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New<br>Hampshire Birth Cohort Study. Exposure and Health, 2023, 15, 269-279.                              | 4.9 | 1         |
| 2  | The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 2022, 103, e3650.                                                                         | 3.2 | 18        |
| 3  | Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .       | 7.1 | 49        |
| 4  | Using nearâ€ŧerm forecasts and uncertainty partitioning to inform prediction of oligotrophic lake cyanobacterial density. Ecological Applications, 2022, 32, e2590.                                          | 3.8 | 6         |
| 5  | Infant infections, respiratory symptoms, and allergy in relation to timing of rice cereal introduction in a United States cohort. Scientific Reports, 2022, 12, 4450.                                        | 3.3 | 5         |
| 6  | Benthic cyanobacteria of the genus Nostoc are a source of microcystins in Greenlandic lakes and ponds. Freshwater Biology, 2021, 66, 266-277.                                                                | 2.4 | 3         |
| 7  | Remote Sensing of Lake Water Clarity: Performance and Transferability of Both Historical Algorithms and Machine Learning. Remote Sensing, 2021, 13, 1434.                                                    | 4.0 | 14        |
| 8  | Microcystins in planktonic and benthic food web components from Greenlandic lakes. Ecosphere, 2021, 12, e03539.                                                                                              | 2.2 | 1         |
| 9  | Species relationships in the extremes and their influence on community stability. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200343.                               | 4.0 | 4         |
| 10 | The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology, 2021, 102, e03486.                                                                                           | 3.2 | 15        |
| 11 | Predicting the effects of climate change on freshwater cyanobacterial blooms requires consideration of the complete cyanobacterial life cycle. Journal of Plankton Research, 2021, 43, 10-19.                | 1.8 | 16        |
| 12 | Relation between in utero arsenic exposure and growth during the first year of life in a New<br>Hampshire pregnancy cohort. Environmental Research, 2020, 180, 108604.                                       | 7.5 | 10        |
| 13 | Arsenic Exposure in Relation to Apple Consumption Among Infants in the New Hampshire Birth Cohort<br>Study. Exposure and Health, 2020, 12, 561-567.                                                          | 4.9 | 8         |
| 14 | Differential Responses of Maximum Versus Median Chlorophyllâ€ <i>a</i> to Air Temperature and<br>Nutrient Loads in an Oligotrophic Lake Over 31ÂYears. Water Resources Research, 2020, 56,<br>e2020WR027296. | 4.2 | 24        |
| 15 | A new variance ratio metric to detect the timescale of compensatory dynamics. Ecosphere, 2020, 11, e03114.                                                                                                   | 2.2 | 14        |
| 16 | "New―cyanobacterial blooms are not new: two centuries of lake production are related to ice cover<br>and land use. Ecosphere, 2020, 11, e03170.                                                              | 2.2 | 15        |
| 17 | Factors affecting MeHg bioaccumulation in stream biota: the role of dissolved organic carbon and diet. Ecotoxicology, 2019, 28, 949-963.                                                                     | 2.4 | 18        |
| 18 | No detectable changes in crayfish behavior due to sublethal dietary mercury exposure. Ecotoxicology and Environmental Safety, 2019, 182, 109440.                                                             | 6.0 | 0         |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Potential Exposure to Arsenic from Infant Rice Cereal. Annals of Global Health, 2018, 82, 221.                                                                                                        | 2.0  | 21        |
| 20 | Opportunities and Challenges for Dietary Arsenic Intervention. Environmental Health Perspectives, 2018, 126, 84503.                                                                                   | 6.0  | 32        |
| 21 | Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS ONE, 2018, 13, e0201383.                                                      | 2.5  | 28        |
| 22 | Prenatal lead exposure and elevated blood pressure in children. Environment International, 2018, 121, 1289-1296.                                                                                      | 10.0 | 42        |
| 23 | Infants' dietary arsenic exposure during transition to solid food. Scientific Reports, 2018, 8, 7114.                                                                                                 | 3.3  | 33        |
| 24 | Sex-specific associations of infants' gut microbiome with arsenic exposure in a US population.<br>Scientific Reports, 2018, 8, 12627.                                                                 | 3.3  | 47        |
| 25 | Advancing Ecosystem Science by Promoting Greater Use of Theory and Multiple Research Approaches in Graduate Education. Ecosystems, 2017, 20, 267-273.                                                 | 3.4  | 6         |
| 26 | Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of the Total Environment, 2017, 579, 1228-1239.                            | 8.0  | 201       |
| 27 | The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communities. Ecosphere, 2017, 8, e01830.                                                   | 2.2  | 12        |
| 28 | Spatial variation in dinoflagellate recruitment along a reservoir ecosystem continuum. Journal of<br>Plankton Research, 2017, 39, 715-728.                                                            | 1.8  | 6         |
| 29 | Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland. Toxins, 2016, 8, 256.                                                                                               | 3.4  | 18        |
| 30 | Crossâ€scale Perspectives: Integrating Longâ€ŧerm and Highâ€frequency Data into Our Understanding of<br>Communities and Ecosystems. Bulletin of the Ecological Society of America, 2016, 97, 129-132. | 0.2  | 3         |
| 31 | Association of Rice and Rice-Product Consumption With Arsenic Exposure Early in Life. JAMA<br>Pediatrics, 2016, 170, 609.                                                                             | 6.2  | 56        |
| 32 | A typology of timeâ€scale mismatches and behavioral interventions to diagnose and solve conservation problems. Conservation Biology, 2016, 30, 42-49.                                                 | 4.7  | 31        |
| 33 | Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. Ecological Applications, 2016, 26, 1771-1784.                                    | 3.8  | 33        |
| 34 | Association of Cesarean Delivery and Formula Supplementation With the Intestinal Microbiome of<br>6-Week-Old Infants. JAMA Pediatrics, 2016, 170, 212.                                                | 6.2  | 238       |
| 35 | Contribution of breast milk and formula to arsenic exposure during the first year of life in a US prospective cohort. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 452-457.  | 3.9  | 17        |
| 36 | Recognizing crossâ€ecosystem responses to changing temperatures: soil warming impacts pelagic food<br>webs. Oikos, 2015, 124, 1473-1481.                                                              | 2.7  | 13        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere, 2015, 6, 1-19.                                                                                                | 2.2  | 198       |
| 38 | Estimated Exposure to Arsenic in Breastfed and Formula-Fed Infants in a United States Cohort.<br>Environmental Health Perspectives, 2015, 123, 500-506.                                               | 6.0  | 73        |
| 39 | Autumn leaf subsidies influence spring dynamics of freshwater plankton communities. Oecologia, 2015, 178, 875-885.                                                                                    | 2.0  | 11        |
| 40 | Arsenic and Rice: Translating Research to Address Health Care Providers'ÂNeeds. Journal of Pediatrics,<br>2015, 167, 797-803.                                                                         | 1.8  | 38        |
| 41 | Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.                                               | 12.8 | 143       |
| 42 | Linking the green and brown worlds: the prevalence and effect of multichannel feeding in food webs.<br>Ecology, 2014, 95, 3376-3386.                                                                  | 3.2  | 79        |
| 43 | Infant toenails as a biomarker of in utero arsenic exposure. Journal of Exposure Science and<br>Environmental Epidemiology, 2014, 24, 467-473.                                                        | 3.9  | 46        |
| 44 | Spatial and temporal variability in recruitment of the cyanobacterium <i>Gloeotrichia echinulata</i> in an oligotrophic lake. Freshwater Science, 2014, 33, 577-592.                                  | 1.8  | 33        |
| 45 | Experimental blooms of the cyanobacterium Gloeotrichia echinulata increase phytoplankton biomass,<br>richness and diversity in an oligotrophic lake. Journal of Plankton Research, 2014, 36, 364-377. | 1.8  | 28        |
| 46 | Trophic state mediates the effects of a large colonial cyanobacterium on phytoplankton dynamics.<br>Fundamental and Applied Limnology, 2014, 184, 247-260.                                            | 0.7  | 5         |
| 47 | Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutrition Journal, 2013, 12, 149.                                                                | 3.4  | 38        |
| 48 | Collaborative Understanding of Cyanobacteria in Lake Ecosystems. College Mathematics Journal, 2013,<br>44, 376-385.                                                                                   | 0.1  | 0         |
| 49 | Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae).<br>Journal of Plankton Research, 2013, 35, 191-200.                                                | 1.8  | 29        |
| 50 | Subsidy quantity and recipient community structure mediate plankton responses to autumn leaf drop.<br>Ecosphere, 2013, 4, 1-18.                                                                       | 2.2  | 15        |
| 51 | Rice Consumption and Urinary Arsenic Concentrations in U.S. Children. Environmental Health Perspectives, 2012, 120, 1418-1424.                                                                        | 6.0  | 134       |
| 52 | Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012,<br>335, 1441-1441.                                                                                | 12.6 | 30        |
| 53 | Occurrence and toxicity of the cyanobacterium Gloeotrichia echinulata in low-nutrient lakes in the northeastern United States. Aquatic Ecology, 2012, 46, 395-409.                                    | 1.5  | 45        |
| 54 | Associations between toenail arsenic concentration and dietary factors in a New Hampshire population. Nutrition Journal, 2012, 11, 45.                                                                | 3.4  | 28        |

| #  | Article                                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Arsenic concentration and speciation in infant formulas and first foods. Pure and Applied Chemistry, 2012, 84, 215-223.                                                                                                                                                                                                       | 1.9  | 78        |
| 56 | Arsenic, Organic Foods, and Brown Rice Syrup. Environmental Health Perspectives, 2012, 120, 623-626.                                                                                                                                                                                                                          | 6.0  | 136       |
| 57 | Thermal sensitivity predicts the establishment success of nonnative species in a mesocosm warming experiment. Ecology, 2012, 93, 2313-2320.                                                                                                                                                                                   | 3.2  | 24        |
| 58 | Linking biotic interactions and climate change to the success of exotic Daphnia lumholtzi. Freshwater<br>Biology, 2011, 56, 2196-2209.                                                                                                                                                                                        | 2.4  | 17        |
| 59 | Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.                                                                                                                                                                                                                                    | 12.6 | 463       |
| 60 | Rice consumption contributes to arsenic exposure in US women. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20656-20660.                                                                                                                                                        | 7.1  | 313       |
| 61 | Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Global Change Biology, 2010, 16, 1351-1365.                                                                                                                                                                           | 9.5  | 95        |
| 62 | Zooplankton grazing of Gloeotrichia echinulata and associated life history consequences. Journal of<br>Plankton Research, 2010, 32, 1337-1347.                                                                                                                                                                                | 1.8  | 12        |
| 63 | Increases in phosphorus at the sediment-water interface may influence the initiation of<br>cyanobacterial blooms in an oligotrophic lake. Verhandlungen Der Internationalen Vereinigung Fur<br>Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied<br>Limnology, 2009, 30, 1185-1188. | 0.1  | 2         |
| 64 | Invasive grass litter facilitates native shrubs through abiotic effects. Journal of Vegetation Science, 2009, 20, 1121-1132.                                                                                                                                                                                                  | 2.2  | 50        |
| 65 | Gloeotrichia echinulata blooms in an oligotrophic lake: helpful insights from eutrophic lakes.<br>Journal of Plankton Research, 2008, 30, 893-904.                                                                                                                                                                            | 1.8  | 62        |
| 66 | MICROBIAL PRODUCTIVITY IN VARIABLE RESOURCE ENVIRONMENTS. Ecology, 2008, 89, 1001-1014.                                                                                                                                                                                                                                       | 3.2  | 39        |
| 67 | Parasites alter community structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9335-9339.                                                                                                                                                                                   | 7.1  | 258       |
| 68 | First report of microcystin-LR in the cyanobacteriumGloeotrichia echinulata. Environmental<br>Toxicology, 2007, 22, 337-339.                                                                                                                                                                                                  | 4.0  | 45        |
| 69 | Relative importance of CO <sub>2</sub> recycling and CH <sub>4</sub> pathways in lake food webs along a dissolved organic carbon gradient. Limnology and Oceanography, 2006, 51, 1602-1613.                                                                                                                                   | 3.1  | 55        |
| 70 | The community ecology of Vibrio cholerae. , 2006, , 105-118.                                                                                                                                                                                                                                                                  |      | 1         |
| 71 | Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment, 2005, 3, 145-152.                                                                                                                                                                                 | 4.0  | 298       |
| 72 | Complexity in Ecology and Conservation: Mathematical, Statistical, and Computational Challenges.<br>BioScience, 2005, 55, 501.                                                                                                                                                                                                | 4.9  | 115       |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | ZOOPLANKTON COMMUNITY STRUCTURE AFFECTS HOW PHYTOPLANKTON RESPOND TO NUTRIENT PULSES.<br>Ecology, 2004, 85, 158-171.                                                    | 3.2 | 34        |
| 74 | Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 2004, 104, 451-457.                                   | 2.7 | 616       |
| 75 | Distribution of plants in a California serpentine grassland: are rocky hummocks spatial refuges for<br>native species?. Plant Ecology, 2004, 172, 159-171.              | 1.6 | 41        |
| 76 | METABOLIC RATE OPENS A GRAND VISTA ON ECOLOGY. Ecology, 2004, 85, 1805-1807.                                                                                            | 3.2 | 15        |
| 77 | Environmental microbe and human pathogen: the ecology and microbiology of Vibrio cholerae.<br>Frontiers in Ecology and the Environment, 2003, 1, 80-86.                 | 4.0 | 63        |
| 78 | ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA. Ecological Monographs, 2003, 73, 301-330.                                             | 5.4 | 435       |
| 79 | COMPETITION, SEED LIMITATION, DISTURBANCE, AND REESTABLISHMENT OF CALIFORNIA NATIVE ANNUAL FORBS. , 2003, 13, 575-592.                                                  |     | 181       |
| 80 | Tackling Biocomplexity: The Role of People, Tools, and Scale. BioScience, 2002, 52, 793.                                                                                | 4.9 | 27        |
| 81 | Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated northâ€ŧemperate lakes. Limnology and Oceanography, 2002, 47, 613-625. | 3.1 | 40        |
| 82 | TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. Ecological Monographs, 2001, 71, 163-186.                                                   | 5.4 | 448       |
| 83 | INTERACTIONS AMONG ENVIRONMENTAL DRIVERS: COMMUNITY RESPONSES TO CHANGING NUTRIENTS AND DISSOLVED ORGANIC CARBON. Ecology, 2001, 82, 3390-3403.                         | 3.2 | 38        |
| 84 | Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters, 2001, 4, 72-85.                                                              | 6.4 | 411       |
| 85 | Increased ecosystem variability and reduced predictability following fertilisation: Evidence from palaeolimnology. Ecology Letters, 2000, 3, 340-348.                   | 6.4 | 66        |
| 86 | THE RELATIONSHIP IN LAKE COMMUNITIES BETWEEN PRIMARY PRODUCTIVITY AND SPECIES RICHNESS.<br>Ecology, 2000, 81, 2662-2679.                                                | 3.2 | 430       |
| 87 | EFFECTS OF GRAZER COMMUNITY STRUCTURE ON PHYTOPLANKTON RESPONSE TO NUTRIENT PULSES.<br>Ecology, 2000, 81, 183-200.                                                      | 3.2 | 52        |
| 88 | An Introduction to the Practice of Ecological Modeling. BioScience, 2000, 50, 694.                                                                                      | 4.9 | 73        |
| 89 | The Relationship in Lake Communities between Primary Productivity and Species Richness. Ecology, 2000, 81, 2662.                                                        | 3.2 | 10        |
| 90 | The Dual Nature of Community Variability. Oikos, 1999, 85, 161.                                                                                                         | 2.7 | 164       |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | National Center for Ecological Analysis and Synthesis, Santa Barbara, California 93101 and Center for<br>Limnology,University of Wisconsin, Madison, Wisconsin 53706. Limnology and Oceanography, 1999, 44,<br>810-827. | 3.1  | 98        |
| 92  | Responses of epilimnetic phytoplankton to experimental nutrient enrichment in three small seepage<br>lakes. Journal of Plankton Research, 1998, 20, 1889-1914.                                                          | 1.8  | 46        |
| 93  | POPULATION, COMMUNITY, AND ECOSYSTEM VARIATES AS ECOLOGICAL INDICATORS: PHYTOPLANKTON RESPONSES TO WHOLE-LAKE ENRICHMENT. , 1998, 8, 508-530.                                                                           |      | 127       |
| 94  | Response of phytoplankton and bacteria to nutrients and zooplankton: a mesocosm experiment.<br>Journal of Plankton Research, 1997, 19, 995-1010.                                                                        | 1.8  | 41        |
| 95  | Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure.<br>Limnology and Oceanography, 1997, 42, 722-729.                                                                       | 3.1  | 56        |
| 96  | Benthic-Pelagic Links: Responses of Benthos to Water-Column Nutrient Enrichment. Journal of the<br>North American Benthological Society, 1997, 16, 466-479.                                                             | 3.1  | 120       |
| 97  | Resilience and Restoration of Lakes. Ecology and Society, 1997, 1, .                                                                                                                                                    | 0.9  | 147       |
| 98  | Predicting the consequences of dreissenid mussels on a pelagic food web. Ecological Modelling, 1996, 85, 129-144.                                                                                                       | 2.5  | 40        |
| 99  | Chlorophyll Variability, Nutrient Input, and Grazing: Evidence from Whole- Lake Experiments. Ecology, 1996, 77, 725-735.                                                                                                | 3.2  | 125       |
| 100 | Pelagic responses to changes in dissolved organic carbon following division of a seepage lake.<br>Limnology and Oceanography, 1996, 41, 553-559.                                                                        | 3.1  | 57        |
| 101 | Food Web Structure and Littoral Zone Coupling to Pelagic Trophic Cascades. , 1996, , 96-105.                                                                                                                            |      | 56        |
| 102 | Resource vs. Ratio-Dependent Consumer-Resource Models: A Bayesian Perspective. Ecology, 1995, 76,<br>1986-1990.                                                                                                         | 3.2  | 13        |
| 103 | Predicting chlorophyll vertical distribution in response to epilimnetic nutrient enrichment in small stratified lakes. Journal of Plankton Research, 1995, 17, 1461-1477.                                               | 1.8  | 21        |
| 104 | Biological Control of Eutrophication in Lakes. Environmental Science & Technology, 1995, 29,<br>784-786.                                                                                                                | 10.0 | 123       |
| 105 | Predictive Indices of Ecosystem Resilience in Models of North Temperate Lakes. Ecology, 1994, 75, 2127-2138.                                                                                                            | 3.2  | 45        |
| 106 | Fitting Predator-Prey Models to Time Series with Observation Errors. Ecology, 1994, 75, 1254-1264.                                                                                                                      | 3.2  | 61        |
| 107 | Food Web Structure and Phosphorus Cycling in Lakes. Transactions of the American Fisheries Society, 1993, 122, 756-772.                                                                                                 | 1.4  | 171       |
| 108 | Food Web Structure and Long-Term Phosphorus Recycling: A Simulation Model Evaluation.<br>Transactions of the American Fisheries Society, 1993, 122, 773-783.                                                            | 1.4  | 22        |

| #   | Article                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Biotic feedbacks in Lake phosphorus cycles. Trends in Ecology and Evolution, 1992, 7, 332-336. | 8.7 | 112       |