## **Gwenael Berthet**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8698061/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Variability of the Aerosol Content in the Tropical Lower Stratosphere from 2013 to 2019: Evidence of<br>Volcanic Eruption Impacts. Atmosphere, 2022, 13, 250.                                                                                                               | 2.3 | 3         |
| 2  | Stratospheric aerosol layer perturbation caused by the 2019ÂRaikoke and Ulawun eruptions and their radiative forcing. Atmospheric Chemistry and Physics, 2021, 21, 535-560.                                                                                                 | 4.9 | 64        |
| 3  | Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer.<br>Atmospheric Chemistry and Physics, 2021, 21, 2745-2764.                                                                                                                 | 4.9 | 18        |
| 4  | Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire<br>Season. Frontiers in Environmental Science, 2021, 9, .                                                                                                                    | 3.3 | 12        |
| 5  | Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires. Remote Sensing, 2021, 13, 3092.                                                                                                                  | 4.0 | 2         |
| 6  | Number of independent measurements required to obtain reliable mean scattering properties of<br>irregular particles having a small size parameter, using microwave analogy measurements. Journal of<br>Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107718. | 2.3 | 8         |
| 7  | Origins and Spatial Distribution of Non-Pure Sulfate Particles (NSPs) in the Stratosphere Detected by the Balloon-Borne Light Optical Aerosols Counter (LOAC). Atmosphere, 2020, 11, 1031.                                                                                  | 2.3 | 8         |
| 8  | Impact of the 2018 Ambae Eruption on the Global Stratospheric Aerosol Layer and Climate. Journal of<br>Geophysical Research D: Atmospheres, 2020, 125, e2020JD032410.                                                                                                       | 3.3 | 22        |
| 9  | Counting and Phase Function Measurements with the LONSCAPE Instrument to Determine Physical Properties of Aerosols in Ice Giant Planet Atmospheres. Space Science Reviews, 2020, 216, 1.                                                                                    | 8.1 | 6         |
| 10 | Measurements of aerosols and charged particles on the BEXUS18 stratospheric balloon. Annales<br>Geophysicae, 2019, 37, 389-403.                                                                                                                                             | 1.6 | 11        |
| 11 | Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation.<br>Atmospheric Chemistry and Physics, 2019, 19, 13547-13567.                                                                                                                | 4.9 | 48        |
| 12 | Vertical distribution of aerosols in dust storms during the Arctic winter. Scientific Reports, 2019, 9, 16122.                                                                                                                                                              | 3.3 | 25        |
| 13 | BATAL: The Balloon Measurement Campaigns of the Asian Tropopause Aerosol Layer. Bulletin of the<br>American Meteorological Society, 2018, 99, 955-973.                                                                                                                      | 3.3 | 74        |
| 14 | Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009<br>eruption cloud compared to in situ and satellite observations. Atmospheric Chemistry and Physics,<br>2018, 18, 3223-3247.                                                | 4.9 | 17        |
| 15 | The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry. Geochimica Et Cosmochimica Acta, 2018, 222, 74-93.                                                                                       | 3.9 | 29        |
| 16 | Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone Depletion After the Mount<br>Calbuco Eruption in 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,308.                                                                               | 3.3 | 31        |
| 17 | How much of the global aerosol optical depth is found in the boundary layer and free troposphere?.<br>Atmospheric Chemistry and Physics, 2018, 18, 7709-7720.                                                                                                               | 4.9 | 40        |
| 18 | Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015<br>Calbuco eruption. Atmospheric Chemistry and Physics, 2017, 17, 15019-15036.                                                                                                 | 4.9 | 32        |

**GWENAEL BERTHET** 

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Significant Contributions of Volcanic Aerosols to Decadal Changes in the Stratospheric Circulation.<br>Geophysical Research Letters, 2017, 44, 10,780.                                                                                                                               | 4.0 | 28        |
| 20 | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations. Atmospheric Chemistry and Physics, 2017, 17, 2229-2253.                                                                                            | 4.9 | 25        |
| 21 | Improved OSIRIS NO <sub>2</sub> retrieval algorithm: description and validation. Atmospheric Measurement Techniques, 2017, 10, 1155-1168.                                                                                                                                            | 3.1 | 10        |
| 22 | LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights. Atmospheric Measurement Techniques, 2016, 9, 3673-3686. | 3.1 | 59        |
| 23 | LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation. Atmospheric Measurement Techniques, 2016, 9, 1721-1742.            | 3.1 | 81        |
| 24 | Balloon-borne measurement of the aerosol size distribution from an Icelandic flood basalt eruption.<br>Earth and Planetary Science Letters, 2016, 453, 252-259.                                                                                                                      | 4.4 | 14        |
| 25 | Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013<br>ChArMEx campaign. Atmospheric Chemistry and Physics, 2016, 16, 8023-8042.                                                                                                           | 4.9 | 9         |
| 26 | Carbonyl Sulphide (OCS) Variability with Latitude in the Atmosphere. Atmosphere - Ocean, 2015, 53,<br>89-101.                                                                                                                                                                        | 1.6 | 24        |
| 27 | Balloon-borne observations of mid-latitude stratospheric water vapour: comparisons with HALOE and<br>MLS satellite data. Journal of Atmospheric Chemistry, 2013, 70, 197-219.                                                                                                        | 3.2 | 10        |
| 28 | A new climatology of aerosols in the middle and upper stratosphere by alternative analysis of GOMOS observations during 2002–2006. International Journal of Remote Sensing, 2013, 34, 4986-5029.                                                                                     | 2.9 | 9         |
| 29 | In situ detection of electrified aerosols in the upper troposphere and stratosphere. Atmospheric<br>Chemistry and Physics, 2013, 13, 11187-11194.                                                                                                                                    | 4.9 | 9         |
| 30 | Validation of MIPAS-ENVISAT H <sub>2</sub> O operational data collected<br>between July 2002 and March 2004. Atmospheric Chemistry and Physics, 2013, 13, 5791-5811.                                                                                                                 | 4.9 | 17        |
| 31 | Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer. Atmospheric<br>Chemistry and Physics, 2013, 13, 6533-6552.                                                                                                                                      | 4.9 | 37        |
| 32 | More evidence for very short-lived substance contribution to stratospheric chlorine inferred from<br>HCl balloon-borne in situ measurements in the tropics. Atmospheric Chemistry and Physics, 2010, 10,<br>397-409.                                                                 | 4.9 | 16        |
| 33 | In situ balloonâ€borne measurements of HNO <sub>3</sub> and HCl stratospheric vertical profiles<br>influenced by polar stratospheric cloud formation during the 2005–2006 Arctic winter. Journal of<br>Geophysical Research, 2010, 115, .                                            | 3.3 | 10        |
| 34 | In situ detection of aerosol layers in the middle stratosphere. Geophysical Research Letters, 2010, 37, .                                                                                                                                                                            | 4.0 | 27        |
| 35 | Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid<br>particles and analysis of their spatial variability. Journal of Geophysical Research, 2008, 113, .                                                                               | 3.3 | 57        |
| 36 | Validation of NO <sub>2</sub> and NO from the Atmospheric Chemistry<br>Experiment (ACE). Atmospheric Chemistry and Physics, 2008, 8, 5801-5841.                                                                                                                                      | 4.9 | 64        |

GWENAEL BERTHET

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A stratospheric NO <sub>2</sub> climatology from Odin/OSIRIS limb-scatter measurements. Canadian<br>Journal of Physics, 2007, 85, 1253-1274.                                                                                                                | 1.1 | 34        |
| 38 | A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere.<br>Journal of Geophysical Research, 2007, 112, .                                                                                                              | 3.3 | 76        |
| 39 | Remoteâ€sensing measurements in the polar vortex: Comparison to in situ observations and implications for the simultaneous retrievals and analysis of the NO <sub>2</sub> and OCIO species. Journal of Geophysical Research, 2007, 112, .                   | 3.3 | 18        |
| 40 | On the ability of chemical transport models to simulate the vertical structure of the<br>N <sub>2</sub> O, NO <sub>2</sub> and<br>HNO <sub>3</sub> species in the mid-latitude stratosphere. Atmospheric<br>Chemistry and Physics, 2006, 6, 1599-1609.      | 4.9 | 21        |
| 41 | Retrieving the vertical distribution of stratospheric OClO from Odin/OSIRIS limb-scattered sunlight measurements. Atmospheric Chemistry and Physics, 2006, 6, 1879-1894.                                                                                    | 4.9 | 29        |
| 42 | Variability of the Lagrangian turbulent diffusion in the lower stratosphere. Atmospheric Chemistry and Physics, 2005, 5, 1605-1622.                                                                                                                         | 4.9 | 69        |
| 43 | Optical and physical properties of stratospheric aerosols from balloon measurements in the visible<br>and near-infrared domains III Presence of aerosols in the middle stratosphere. Applied Optics, 2005, 44,<br>4086.                                     | 2.1 | 22        |
| 44 | Nighttime chlorine monoxide observations by the Odin satellite and implications for the CIO/Cl2O2equilibrium. Geophysical Research Letters, 2005, 32, .                                                                                                     | 4.0 | 19        |
| 45 | Investigating the Halogen Chemistry From High-Latitude Nighttime Stratospheric Measurements of OCIO and NO2. Journal of Atmospheric Chemistry, 2004, 48, 261-282.                                                                                           | 3.2 | 8         |
| 46 | Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains I Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers. Applied Optics, 2002, 41, 7522. | 2.1 | 22        |
| 47 | Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains II Comparison of extinction, reflectance, polarization, and counting measurements. Applied Optics, 2002, 41, 7540.             | 2.1 | 20        |
| 48 | Measurements and simulation of stratospheric NO3at mid and high latitudes in the northern hemisphere. Journal of Geophysical Research, 2001, 106, 32387-32399.                                                                                              | 3.3 | 18        |
| 49 | SALOMON: a new, light balloonborne UV–visible spectrometer for nighttime observations of stratospheric trace-gas species. Applied Optics, 2000, 39, 386.                                                                                                    | 2.1 | 29        |