
Justin D Lathia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8697865/publications.pdf Version: 2024-02-01

ΙΠΕΤΙΝ ΟΓΑΤΗΙΑ

#	Article	IF	CITATIONS
1	Cancer stem cells in glioblastoma. Genes and Development, 2015, 29, 1203-1217.	2.7	1,248
2	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	7.7	1,196
3	Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell, 2013, 153, 139-152.	13.5	729
4	Integrin Alpha 6 Regulates Glioblastoma Stem Cells. Cell Stem Cell, 2010, 6, 421-432.	5.2	597
5	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	1.4	505
6	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	7.1	408
7	An anatomic transcriptional atlas of human glioblastoma. Science, 2018, 360, 660-663.	6.0	384
8	Targeting Cancer Stemness in the Clinic: From Hype to Hope. Cell Stem Cell, 2019, 24, 25-40.	5.2	362
9	High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 2014, 8, 627-634.	15.6	358
10	c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells. PLoS ONE, 2008, 3, e3769.	1.1	352
11	Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth. Stem Cells, 2009, 27, 2393-2404.	1.4	300
12	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	13.5	280
13	Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer Discovery, 2019, 9, 96-113.	7.7	256
14	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	7.7	249
15	Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Science Translational Medicine, 2019, 11, .	5.8	230
16	Cancer stem cell–immune cell crosstalk in tumour progression. Nature Reviews Cancer, 2021, 21, 526-536.	12.8	229
17	Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment. Cell Stem Cell, 2011, 8, 482-485.	5.2	218
18	Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance. Cancer Research, 2015, 75, 924-929.	0.4	203

Justin D Lathia

#	Article	IF	CITATIONS
19	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	1.4	189
20	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	1.4	182
21	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	2.8	151
22	Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression. Cell Stem Cell, 2017, 20, 450-461.e4.	5.2	147
23	MET Signaling Regulates Glioblastoma Stem Cells. Cancer Research, 2012, 72, 3828-3838.	0.4	145
24	Myeloid-Derived Suppressor Cell Subsets Drive Glioblastoma Growth in a Sex-Specific Manner. Cancer Discovery, 2020, 10, 1210-1225.	7.7	138
25	Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 2018, 3, .	2.3	137
26	Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. PLoS ONE, 2011, 6, e24807.	1.1	125
27	Females have the survival advantage in glioblastoma. Neuro-Oncology, 2018, 20, 576-577.	0.6	122
28	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	2.6	117
29	Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nature Genetics, 2021, 53, 342-353.	9.4	109
30	Laminin enhances the growth of human neural stem cells in defined culture media. BMC Neuroscience, 2008, 9, 71.	0.8	107
31	Overview of Cancer Stem Cells and Stemness for Community Oncologists. Targeted Oncology, 2017, 12, 387-399.	1.7	103
32	Differential Connexin Function Enhances Self-Renewal in Glioblastoma. Cell Reports, 2015, 11, 1031-1042.	2.9	100
33	Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes and Development, 2012, 26, 1247-1262.	2.7	96
34	Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Frontiers in Immunology, 2020, 11, 1191.	2.2	92
35	The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro-Oncology, 2016, 18, 153-159.	0.6	86
36	A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes. Cancer Cell, 2015, 28, 730-742.	7.7	85

#	Article	IF	CITATIONS
37	Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression throughÂHIF-1α accumulation. Nature Cell Biology, 2014, 16, 445-456.	4.6	83
38	Sex Differences in Cancer Incidence and Survival: A Pan-Cancer Analysis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1389-1397.	1.1	82
39	Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 2019, 4, .	2.3	82
40	RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis. Stem Cell Reports, 2017, 9, 438-450.	2.3	78
41	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	2.9	76
42	Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer. Stem Cells, 2015, 33, 2114-2125.	1.4	72
43	Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 423-435.	1.7	70
44	Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics, 2017, 14, 372-384.	2.1	70
45	CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. Journal of Experimental Medicine, 2017, 214, 2715-2732.	4.2	67
46	Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro-Oncology, 2016, 18, 48-57.	0.6	66
47	Pharmacological Targeting of the Histone Chaperone Complex FACT Preferentially Eliminates Glioblastoma Stem Cells and Prolongs Survival in Preclinical Models. Cancer Research, 2016, 76, 2432-2442.	0.4	62
48	Cancer Connectors: Connexins, Gap Junctions, and Communication. Frontiers in Oncology, 2018, 8, 646.	1.3	61
49	Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS ONE, 2017, 12, e0182954.	1.1	61
50	Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nature Communications, 2018, 9, 578.	5.8	60
51	Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathologica Communications, 2021, 9, 101.	2.4	60
52	Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death and Differentiation, 2017, 24, 167-180.	5.0	59
53	ADAMDEC1 Maintains a Growth Factor Signaling Loop in Cancer Stem Cells. Cancer Discovery, 2019, 9, 1574-1589.	7.7	59
54	Cisplatin induces stemness in ovarian cancer. Oncotarget, 2016, 7, 30511-30522.	0.8	58

#	Article	IF	CITATIONS
55	Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Seminars in Cancer Biology, 2022, 82, 162-175.	4.3	58
56	Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Scientific Reports, 2018, 8, 7352.	1.6	56
57	A Systems Pharmacology Approach Uncovers Wogonoside as an Angiogenesis Inhibitor of Triple-Negative Breast Cancer by Targeting Hedgehog Signaling. Cell Chemical Biology, 2019, 26, 1143-1158.e6.	2.5	53
58	Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Research, 2021, 31, 1900-1912.	2.4	53
59	Sex-specific gene and pathway modeling of inherited glioma risk. Neuro-Oncology, 2019, 21, 71-82.	0.6	52
60	The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro-Oncology, 2021, 23, 199-213.	0.6	52
61	The malignant social network. Cell Adhesion and Migration, 2012, 6, 346-355.	1.1	43
62	Role of Cysteine-rich 61 Protein (CCN1) in Macrophage-mediated Oncolytic Herpes Simplex Virus Clearance. Molecular Therapy, 2014, 22, 1678-1687.	3.7	38
63	Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro-Oncology, 2016, 18, 656-666.	0.6	37
64	Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Reports, 2016, 16, 939-949.	2.9	36
65	STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocrine-Related Cancer, 2017, 24, 415-426.	1.6	36
66	Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neuro-Oncology Practice, 2019, 6, 451-462.	1.0	36
67	SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells. EMBO Molecular Medicine, 2020, 12, e12291.	3.3	35
68	Junctional Adhesion Molecules in Cancer: A Paradigm for the Diverse Functions of Cell–Cell Interactions in Tumor Progression. Cancer Research, 2020, 80, 4878-4885.	0.4	34
69	Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma. Journal of Clinical Investigation, 2021, 131, .	3.9	34
70	Revealing the glioma cancer stem cell interactome, one niche at a time. Journal of Pathology, 2018, 244, 260-264.	2.1	30
71	Migrating glioma cells express stem cell markers and give rise to new tumors upon xenografting. Journal of Neuro-Oncology, 2016, 130, 53-62.	1.4	29
72	Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas. Neuro-Oncology, 2022, 24, 302-310.	0.6	29

#	Article	IF	CITATIONS
73	Seeing is Believing: Are Cancer Stem Cells the Loch Ness Monster of Tumor Biology?. Stem Cell Reviews and Reports, 2011, 7, 227-237.	5.6	28
74	New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Research, 2017, 77, 5222-5227.	0.4	28
75	Direct contact with perivascular tumor cells enhances integrin $\hat{I}\pm\nu\hat{I}^23$ signaling and migration of endothelial cells. Oncotarget, 2016, 7, 43852-43867.	0.8	28
76	Development of a Cx46 Targeting Strategy for Cancer Stem Cells. Cell Reports, 2019, 27, 1062-1072.e5.	2.9	27
77	Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget, 2017, 8, 35639-35655.	0.8	27
78	Macropinocytosis of Bevacizumab by Glioblastoma Cells in the Perivascular Niche Affects their Survival. Clinical Cancer Research, 2017, 23, 7059-7071.	3.2	26
79	An update on minding the gap in cancer. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 237-243.	1.4	26
80	JAM-A functions as a female microglial tumor suppressor in glioblastoma. Neuro-Oncology, 2020, 22, 1591-1601.	0.6	26
81	Adhering towards tumorigenicity: altered adhesion mechanisms in glioblastoma cancer stem cells. CNS Oncology, 2016, 5, 251-259.	1.2	23
82	Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death and Disease, 2020, 11, 152.	2.7	23
83	Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Neuro-Oncology, 2015, 17, 361-371.	0.6	22
84	The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking. Oncotarget, 2017, 8, 33316-33328.	0.8	22
85	Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells. JCI Insight, 2021, 6, .	2.3	22
86	A 4-miRNA signature to predict survival in glioblastomas. PLoS ONE, 2017, 12, e0188090.	1.1	21
87	Cx25 contributes to leukemia cell communication and chemosensitivity. Oncotarget, 2015, 6, 31508-31521.	0.8	21
88	Increased cancer stem cell invasion is mediated by myosin IIB and nuclear translocation. Oncotarget, 2016, 7, 47586-47592.	0.8	21
89	Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells. Stem Cell Reports, 2017, 9, 1948-1960.	2.3	20
90	Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Scientific Reports, 2019, 9, 17663.	1.6	20

Justin D Lathia

#	Article	IF	CITATIONS
91	The Lgr5 transgene is expressed specifically in glycinergic amacrine cells in the mouse retina. Experimental Eye Research, 2014, 119, 106-110.	1.2	19
92	Feedback circuitry between <i>miR-218</i> repression and RTK activation in glioblastoma. Science Signaling, 2015, 8, ra42.	1.6	19
93	The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathologica, 2019, 138, 1033-1052.	3.9	19
94	Connexins in Cancer: Jekyll or Hyde?. Biomolecules, 2020, 10, 1654.	1.8	19
95	Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells. Trends in Neurosciences, 2016, 39, 463-471.	4.2	18
96	MBOAT7-driven phosphatidylinositol remodeling promotes the progression of clear cell renal carcinoma. Molecular Metabolism, 2020, 34, 136-145.	3.0	18
97	Cancer stem cells: moving past the controversy. CNS Oncology, 2013, 2, 465-467.	1.2	15
98	Expression and prognostic value of JAM-A in gliomas. Journal of Neuro-Oncology, 2017, 135, 107-117.	1.4	15
99	Poly(ADP-Ribose) Polymerase Inhibition Sensitizes Colorectal Cancer-Initiating Cells to Chemotherapy. Stem Cells, 2019, 37, 42-53.	1.4	15
100	Gliomas display distinct sex-based differential methylation patterns based on molecular subtype. Neuro-Oncology Advances, 2020, 2, vdaa002.	0.4	15
101	Five-Part Pentameric Nanocomplex Shows Improved Efficacy of Doxorubicin in CD44+ Cancer Cells. ACS Omega, 2017, 2, 7702-7713.	1.6	12
102	Highâ€Throughput Automated Singleâ€Cell Imaging Analysis Reveals Dynamics of Glioblastoma Stem Cell Population During State Transition. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 290-301.	1.1	12
103	Optimising gene editing for cancer therapy. Nature Cell Biology, 2020, 22, 259-261.	4.6	11
104	Sex Differences in Glioblastoma Immunotherapy Response. NeuroMolecular Medicine, 2022, 24, 50-55.	1.8	11
105	Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Communications Biology, 2021, 4, 780.	2.0	11
106	Independently validated sex-specific nomograms for predicting survival in patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Journal of Neuro-Oncology, 2021, 155, 363-372.	1.4	11
107	Small-Molecule HSP27 Inhibitor Abolishes Androgen Receptors in Glioblastoma. Journal of Medicinal Chemistry, 2021, 64, 1570-1583.	2.9	10
108	Reporter Systems to Study Cancer Stem Cells. Methods in Molecular Biology, 2016, 1516, 319-333.	0.4	9

#	Article	IF	CITATIONS
109	Induction of HEXIM1 activities by HMBA derivative 4a1: Functional consequences and mechanism. Cancer Letters, 2016, 379, 60-69.	3.2	9
110	Outlining involvement of stem cell program in regulation of O6â€methylguanine DNA methyltransferase and development of temozolomide resistance in glioblastoma. Journal of Neurochemistry, 2018, 144, 688-690.	2.1	9
111	Seeing the GBM diversity spectrum. Nature Cancer, 2021, 2, 135-137.	5.7	9
112	Bazedoxifene inhibits sustained STAT3 activation and increases survival in GBM. Translational Oncology, 2021, 14, 101192.	1.7	8
113	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	1.8	8
114	Enrichment and Interrogation of Cancer Stem Cells. , 2016, , 59-98.		7
115	Isolation, Characterization, and Expansion of Cancer Stem Cells. Methods in Molecular Biology, 2017, 1553, 133-143.	0.4	7
116	Recasting the Cancer Stem Cell Hypothesis: Unification Using a Continuum Model of Microenvironmental Forces. Current Stem Cell Reports, 2019, 5, 22-30.	0.7	7
117	ADAMDEC1 and FGF2/FGFR1 signaling constitute a positive feedback loop to maintain GBM cancer stem cells. Molecular and Cellular Oncology, 2020, 7, 1684787.	0.3	7
118	Therapeutic Injury and Tumor Regrowth: Tumor Resection and Radiation Establish the Recurrent Glioblastoma Microenvironment. EBioMedicine, 2018, 31, 13-14.	2.7	6
119	Unexplored Functions of Sex Hormones in Glioblastoma Cancer Stem Cells. Endocrinology, 2022, 163, .	1.4	5
120	Holding on to stemness. Nature Cell Biology, 2012, 14, 450-452.	4.6	4
121	The Translocator Protein (TSPO) Genetic Polymorphism A147T Is Associated with Worse Survival in Male Glioblastoma Patients. Cancers, 2021, 13, 4525.	1.7	4
122	A <i>Drosophila</i> RNAi screen reveals conserved glioblastoma-related adhesion genes that regulate collective cell migration. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
123	Comparing and Contrasting the Effects of <i>Drosophila</i> Condensin II Subunit dCAP-D3 Overexpression and Depletion <i>in Vivo</i> . Genetics, 2018, 210, 531-546.	1.2	2
124	Sexually dimorphic impact of the iron-regulating gene, HFE, on survival in glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa001.	0.4	2
125	Awakening the Beast: Chemotherapeutic Activation of Cancer Stem Cells. Science Translational Medicine, 2015, 7, .	5.8	2
126	Pharmacokinetic and brain distribution study of an antiâ€glioblastoma agent in mice by HPLC–MS/MS. Biomedical Chromatography, 2022, 36, e5310.	0.8	2

#	Article	IF	CITATIONS
127	Modeling mayhem: predicting invasion and proliferation kinetics in IDH1 mutant glioblastoma with mathematical models. Neuro-Oncology, 2014, 16, 763-764.	0.6	1
128	Fountain of chaos: cerebrospinal fluid enhancement of cancer stem cells in glioblastoma. Neuro-Oncology, 2021, 23, 530-532.	0.6	1
129	A circuitous route to GBM stem cell signalling. Nature Cell Biology, 2021, 23, 211-212.	4.6	1
130	Development of near-infrared imaging agents for detection of junction adhesion molecule-A protein. Translational Oncology, 2021, 14, 101007.	1.7	1
131	Neutralizing shapeshifting pericytes enhances glioblastoma therapeutic efficacy. Cell Research, 2021, 31, 1039-1040.	5.7	1
132	Development of a Cx46 Targeting Strategy for Cancer Stem Cells. SSRN Electronic Journal, 0, , .	0.4	1
133	Protecting the Fortress: Preventing Metastasis by Neutralizing Niche Homing. Science Translational Medicine, 2014, 6, .	5.8	1
134	Blood vessels in neurological development and disease: more than silent spectators. Future Neurology, 2010, 5, 779-781.	0.9	0
135	IMMU-70. GLOBAL IMMUNE FINGERPRINTING IN GLIOBLASTOMA REVEALS IMMUNE-SUPPRESSION SIGNATURES ASSOCIATED WITH PROGNOSIS. Neuro-Oncology, 2018, 20, vi137-vi137.	0.6	Ο
136	STEM-14. GROWTH FACTOR RECEPTOR CO-INHERITANCE DURING ASYMMETRIC CELL DIVISION DRIVES THE CANCER STEM CELL PHENOTYPE. Neuro-Oncology, 2018, 20, vi246-vi246.	0.6	0
137	The metalloproteinase ADAMDEC1 maintains a novel growth factor signalling loop in glioblastoma cancer stem cells. Neuro-Oncology, 2019, 21, iv1-iv1.	0.6	Ο
138	Go, cancer stem cell, go! CSCs overcome myelin inhibition to move within white matter pathways. Brain, 2021, 144, 357-360.	3.7	0
139	OMIC-10. TRANSCRIPTOMIC ANALYSIS REVEALS SEX DIFFERENCES IN PEDIATRIC BRAIN MECHANISMS. Neuro-Oncology, 2021, 23, i39-i39.	0.6	Ο
140	All Damage Is Not Created Equal: Unraveling the Complexity of Sex Chromosomes and Hormones in the DNA Damage Response. Endocrinology, 2021, 162, .	1.4	0
141	A Chink in Glioblastoma's Armor. Science Translational Medicine, 2014, 6, .	5.8	Ο
142	Removing the Veil from Cancer Stem Cells. Science Translational Medicine, 2014, 6, .	5.8	0
143	Using Mutant IDH1 to Arm the Immune System in Cancer. Science Translational Medicine, 2014, 6, .	5.8	Ο
144	Cracking the Metastatic Code. Science Translational Medicine, 2014, 6, .	5.8	0

#	Article	IF	CITATIONS
145	Niche guidance of hematopoietic differentiation. Science Translational Medicine, 2015, 7, .	5.8	Ο
146	Asymmetric Division Promotes Therapeutic Resistance in Glioblastoma Stem Cells. SSRN Electronic Journal, O, , .	0.4	0
147	All Glioblastoma Are Not Equal: Distinct Spatial Immune Profiles Between <i>De Novo</i> and Recurrent Tumors. Cancer Immunology Research, 0, , OF1-OF2.	1.6	0
148	Preinvasive to Invasive: PD-1–Expressing Macrophages Shift Lung Cancer into High Gear. Cancer Research, 2022, 82, 2515-2516.	0.4	0