Emmanuel Momjian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8697812/publications.pdf

Version: 2024-02-01

93 papers 2,641 citations

218677 26 h-index 206112 48 g-index

94 all docs 94 docs citations 94 times ranked 2843 citing authors

#	Article	IF	CITATIONS
1	CHILES. VII. Deep Imaging for the CHILES Project, an SKA Prototype. Astronomical Journal, 2022, 163, 59.	4.7	4
2	Discovery of a Damped Lyl̂ \pm Absorber Originating in a Spectacular Interacting Dwarf Galaxy Pair at $z=0.026$. Astrophysical Journal Letters, 2022, 926, L33.	8.3	1
3	The radio spectral turnover of radio-loud quasars at <i>z</i> > 5. Astronomy and Astrophysics, 2022, 659, A159.	5.1	8
4	H i Gas Playing Hide-and-seek around a Powerful FRI-type Quasar at z $\hat{a}^{1}/4$ 2.1. Astrophysical Journal Letters, 2022, 927, L24.	8.3	1
5	MALS SALT-NOT Survey of MIR-selected Powerful Radio-bright AGN at 0 < z < 3.5. Astrophysical Journal, 2022, 929, 108.	4.5	4
6	Exploring the Radio Spectral Energy Distribution of the Ultraluminous Radio-quiet Quasar SDSS J0100+2802 at Redshift 6.3. Astrophysical Journal, 2022, 929, 69.	4.5	3
7	Long-term Variability of Class I Methanol Masers in the High-mass Star-forming Region DR21(OH). Astrophysical Journal, 2022, 930, 114.	4.5	0
8	Mapping H <scp>i</scp> 21-cm in the Klemola 31 group at <i>z</i> Â= 0.029: emission and absorption towards PKS 2020â°370. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2050-2061.	4.4	2
9	Blind H i and OH Absorption Line Search: First Results with MALS and uGMRT Processed Using ARTIP. Astrophysical Journal, 2021, 907, 11.	4.5	20
10	Constraining the Quasar Radio-loud Fraction at z $\hat{a}^{-1/4}$ 6 with Deep Radio Observations. Astrophysical Journal, 2021, 908, 124.	4.5	30
11	The Discovery of a Highly Accreting, Radio-loud Quasar at $z = 6.82$. Astrophysical Journal, 2021, 909, 80.	4.5	55
12	The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ≲ z ≲ 3 Star-forming Galaxies. Astrophysical Journal, 2021, 910, 106.	4.5	11
13	Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years. Astrophysical Journal, 2021, 911, 120.	4.5	17
14	PKS 1830–211: OH and Hâ€T at <i>z</i> = 0.89 and the first MeerKAT UHF spectrum. Astronomy and Astrophysics, 2021, 648, A116.	5.1	12
15	Resolving the Radio Emission from the Quasar P172+18 at $z = 6.82$. Astronomical Journal, 2021, 161, 207.	4.7	15
16	The VLA Frontier Fields Survey: Deep, High-resolution Radio Imaging of the MACS Lensing Clusters at 3 and 6 GHz. Astrophysical Journal, 2021, 910, 105.	4.5	7
17	A Comparison between Nuclear Ring Star Formation in LIRGs and in Normal Galaxies with the Very Large Array. Astrophysical Journal, 2021, 916, 73.	4.5	14
18	Evolution of Cold Gas at 2 < z < 5: A Blind Search for H i and OH Absorption Lines toward Mid-infrared Color-selected Radio-loud AGN. Astrophysical Journal, Supplement Series, 2021, 255, 28.	7.7	11

#	Article	IF	CITATIONS
19	Discovery of methanimine (CH ₂ NH) megamasers toward compact obscured galaxy nuclei. Astronomy and Astrophysics, 2021, 654, A110.	5.1	3
20	The Impact of Powerful Jets on the Far-infrared Emission of an Extreme Radio Quasar at z \hat{a}^4 6. Astrophysical Journal, 2021, 920, 150.	4.5	11
21	DIISC-I: The Discovery of Kinematically Anomalous H i Clouds in M 100. Astrophysical Journal, 2021, 922, 69.	4.5	4
22	CHILES VERDES: Radio Variability at an Unprecedented Depth and Cadence in the COSMOS Field. Astrophysical Journal, 2021, 923, 31.	4.5	11
23	DIISC-II: Unveiling the Connections between Star Formation and Interstellar Medium in the Extended Ultraviolet Disk of NGC 3344. Astrophysical Journal, 2021, 923, 199.	4.5	3
24	CHILES VI: HÂ <scp>i</scp> and HÂα observations for <i>z</i> & amp;lt; 0.1 galaxies; probing HÂ <scp>i</scp> spin alignment with filaments in the cosmic web. Monthly Notices of the Royal Astronomical Society, 2020, 492, 153-176.	4.4	29
25	The Star Formation in Radio Survey: 3–33 GHz Imaging of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions. Astrophysical Journal, Supplement Series, 2020, 248, 25.	7.7	24
26	Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH ₂ CN) in TMC-1. Astrophysical Journal Letters, 2020, 900, L10.	8.3	60
27	Where's the Dust?: The Deepening Anomaly of Microwave Emission in NGC 4725 B. Astrophysical Journal Letters, 2020, 905, L23.	8.3	4
28	A Curious Case of Circular Polarization in the 25 GHz Methanol Maser Line toward OMC-1. Astrophysical Journal, 2020, 890, 6.	4.5	2
29	Dual AGN Candidates with Double-peaked [O iii] Lines Matching that of Confirmed Dual AGNs. Astrophysical Journal, 2020, 904, 23.	4.5	14
30	Large-scale Structure in CHILES Using DisPerSE. Astronomical Journal, 2019, 157, 254.	4.7	16
31	A Very Large Array Survey of Luminous Extranuclear Star-forming Regions in Luminous Infrared Galaxies in GOALS. Astrophysical Journal, 2019, 881, 70.	4.5	13
32	Far-infrared Properties of the Bright, Gravitationally Lensed Quasar J0439+1634 at zÂ=Â6.5. Astrophysical Journal, 2019, 880, 153.	4.5	42
33	A Dual Black Hole Associated with Obscured and Unobscured AGNs: CXO J101527.2+625911. Astrophysical Journal, 2019, 882, 149.	4.5	2
34	Discovery of a Damped Lyl± System in a Low-z Galaxy Group: Possible Evidence for Gas Inflow and Nuclear Star Formation. Astrophysical Journal, 2019, 871, 239.	4.5	9
35	The Zeeman Effect in the 44 GHz Class I Methanol (CH ₃ OH) Maser Line toward DR21W. Astrophysical Journal, 2019, 872, 12.	4.5	3
36	Nature of Faint Radio Sources in GOODS-North and GOODS-South Fields. I. Spectral Index and Radio–FIR Correlation. Astrophysical Journal, 2019, 875, 80.	4.5	17

#	Article	IF	CITATIONS
37	Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51. Astronomy and Astrophysics, 2019, 625, A19.	5.1	47
38	CHILES: HÂ <scp>i</scp> morphology and galaxy environment at <i>z</i> Â= 0.12 and <i>z</i> Â= 0.17. Month Notices of the Royal Astronomical Society, 2019, 484, 2234-2256.	ly _{4.4}	23
39	Diagnostics of a nuclear starburst: water and methanol masers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5434-5443.	4.4	11
40	Preliminary results from prebiotic molecules with ALMA in the era of artificial intelligence. Proceedings of the International Astronomical Union, 2019, 15, 248-250.	0.0	0
41	Discovery of CO absorption at $\langle i \rangle z \langle i \rangle = 0.05$ in G0248+430. Astronomy and Astrophysics, 2019, 623, A133.	5.1	9
42	The Arecibo L-band Feed Array Zone of Avoidance (ALFAZOA) Shallow Survey. Astronomical Journal, 2019, 158, 234.	4.7	4
43	Discovery of OH Absorption from a Galaxy at zÂâ^1/4Â0.05: Implications for Large Surveys with SKA Pathfinders. Astrophysical Journal Letters, 2018, 860, L22.	8.3	15
44	Zeeman Effect Observations in Class I Methanol Masers. Proceedings of the International Astronomical Union, 2018, 14, 140-140.	0.0	0
45	VLBA+GBT observations of the COSMOS field and radio source counts at 1.4 GHz. Astronomy and Astrophysics, 2018, 616, A128.	5.1	8
46	A New Detection of Extragalactic Anomalous Microwave Emission in a Compact, Optically Faint Region of NGC 4725. Astrophysical Journal, 2018, 862, 20.	4.5	20
47	The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions. Astrophysical Journal, Supplement Series, 2018, 234, 24.	7.7	26
48	The first VLBI detection of a spiral DRAGN core. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L99-L104.	3.3	2
49	Resolving the Powerful Radio-loud Quasar at <i>z</i> â^¼ 6. Astrophysical Journal, 2018, 861, 86.	4.5	26
50	A Powerful Radio-loud Quasar at the End of Cosmic Reionization. Astrophysical Journal Letters, 2018, 861, L14.	8.3	50
51	Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146. Astrophysical Journal, 2018, 856, 134.	4.5	19
52	The MeerKAT Absorption Line Survey (MALS). , 2018, , .		4
53	The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming νJY Radio Sources. Astrophysical Journal, 2017, 839, 35.	4.5	55
54	The Hawaii SCUBA-2 Lensing Cluster Survey: Radio-detected Submillimeter Galaxies in the HST Frontier Fields. Astrophysical Journal, 2017, 840, 29.	4.5	2

#	Article	IF	CITATIONS
55	Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry, andÂWater and Methanol Masers in the Nuclear Starburst of NGC 253. Astrophysical Journal, 2017, 842, 124.	4.5	32
56	Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization. Astrophysical Journal Letters, 2017, 835, L20.	8.3	12
57	THE ZEEMAN EFFECT IN THE 44 GHZ CLASS I METHANOL MASER LINE TOWARD DR21(OH). Astrophysical Journal, 2017, 834, 168.	4.5	17
58	A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum. Astrophysical Journal, 2017, 843, 117.	4.5	37
59	HÂi 21-cm absorption survey of quasar-galaxy pairs: distribution of cold gas around <i>z</i> Â<Â0.4 galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 588-618.	4.4	24
60	The faint radio sky: VLBA observations of the COSMOS field. Astronomy and Astrophysics, 2017, 607, A132.	5.1	46
61	NEW CONSTRAINTS ON THE MOLECULAR GAS IN THE PROTOTYPICAL HyLIRGs BRI 1202–0725 AND BRI 1335–0417. Astrophysical Journal, 2016, 830, 63.	4.5	8
62	HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT $z=0.376$. Astrophysical Journal Letters, 2016, 824, L1.	8.3	89
63	HIGH-RESOLUTION OBSERVATIONS OF MOLECULAR LINES IN ARP 220: KINEMATICS, MORPHOLOGY, AND LIMITS ON THE APPLICABILITY OF THE AMMONIA THERMOMETER. Astrophysical Journal, 2016, 833, 41.	4.5	12
64	PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT zÂ=Â6.3. Astrophysical Journal, 2016, 830, 53.	4.5	86
65	Imaging SKA-scale data in three different computing environments. Astronomy and Computing, 2016, 14, 8-22.	1.7	15
66	Circumnuclear and infalling H i gas in a merging galaxy pair at zÂ=Â0.123. Monthly Notices of the Royal Astronomical Society, 2015, 451, 917-926.	4.4	24
67	MICROWAVE CONTINUUM EMISSION AND DENSE GAS TRACERS IN NGC 3627: COMBINING JANSKY VLA AND ALMA OBSERVATIONS. Astrophysical Journal, 2015, 813, 118.	4.5	19
68	SWAN: NGC 253's Nucleated Star Bursting Environment. Proceedings of the International Astronomical Union, 2015, 11, .	0.0	0
69	HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220. Astrophysical Journal, 2015, 799, 10.	4.5	69
70	SMALL-SCALE PROPERTIES OF ATOMIC GAS IN EXTENDED DISKS OF GALAXIES. Astrophysical Journal, 2014, 795, 98.	4.5	19
71	The spin temperature of high-redshift damped Lyman α systems. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2131-2166.	4.4	95
72	THE HIGHEST REDSHIFT QUASAR AT <i>>z</i> = 7.085: A RADIO-QUIET SOURCE. Astronomical Journal, 2014, 147, 6.	4.7	17

#	Article	IF	CITATIONS
73	A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD. Astrophysical Journal Letters, 2013, 770, L29.	8.3	53
74	Parsec-scale structures and diffuse bands in a translucent interstellar medium at zâ‰ f 0.079ã $$ Monthly Notices of the Royal Astronomical Society, 2013, 428, 2198-2206.	4.4	36
75	COMPARISON OF TWO EPOCHS OF THE ZEEMAN EFFECT IN THE 44 GHz CLASS I METHANOL (CH ₃ OH) MASER LINE IN OMC-2. Astronomical Journal, 2012, 144, 189.	4.7	7
76	A GREEN BANK TELESCOPE SURVEY FOR H I $21\ cm$ ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES. Astrophysical Journal, 2011, 727, 52.	4.5	22
77	COMPLEX RADIO SPECTRAL ENERGY DISTRIBUTIONS IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES. Astrophysical Journal Letters, 2011, 739, L25.	8.3	35
78	USING 21 cm ABSORPTION IN SMALL IMPACT PARAMETER GALAXY-QUASAR PAIRS TO PROBE LOW-REDSHIFT DAMPED AND SUB-DAMPED Lyl± SYSTEMS. Astrophysical Journal, 2010, 713, 131-145.	4.5	34
79	A RADIO SPECTRAL LINE STUDY OF THE 2 Jy <i>IRAS</i> Policy in the study of the policy in the pol	4.7	12
80	HIGH-SENSITIVITY ARRAY OBSERVATIONS OF THE $\langle i \rangle z \langle i \rangle = 1.87$ SUBMILLIMETER GALAXY GOODS 850-3. Astronomical Journal, 2010, 139, 1622-1627.	4.7	10
81	THE ARECIBO <i>L</i> -BAND FEED ARRAY ZONE OF AVOIDANCE SURVEY. I. PRECURSOR OBSERVATIONS THROUGH THE INNER AND OUTER GALAXY. Astronomical Journal, 2010, 139, 2130-2147.	4.7	21
82	DETECTION OF THE ZEEMAN EFFECT IN THE 36 GHz CLASS I CH ₃ OH MASER LINE WITH THE EVLA. Astrophysical Journal, 2009, 705, L176-L179.	4.5	22
83	VERY LARGE ARRAY AND VERY LONG BASELINE ARRAY OBSERVATIONS OF THE HIGHEST REDSHIFT RADIO-LOUD QSO J1427+3312 AT <i>Z</i> = 6.12. Astronomical Journal, 2008, 136, 344-349.	4.7	27
84	THE ARECIBO ARP 220 SPECTRAL CENSUS. I. DISCOVERY OF THE PRE-BIOTIC MOLECULE METHANIMINE AND NEW CM-WAVELENGTH TRANSITIONS OF OTHER MOLECULES. Astronomical Journal, 2008, 136, 389-399.	4.7	64
85	Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang. Astrophysical Journal, 2008, 686, L9-L12.	4.5	54
86	High Sensitivity Array Observations of the <i>z</i> = 4.4 QSO BRI 1335-0417. Astronomical Journal, 2007, 134, 694-697.	4.7	10
87	Sensitive Very Long Baseline Interferometry Studies of the OH Megamaser Emission from IRAS 17208â^'0014. Astrophysical Journal, 2006, 653, 1172-1179.	4.5	22
88	Absorptionâ€Line Study of Halo Gas in NGC 3067 toward the Background Quasar 3C 232. Astrophysical Journal, 2005, 622, 267-278.	4.5	27
89	Sensitive VLBI Observations of thez [FORMULA] [F]=4.7 [/F] [/FORMULA] QSO BRI 1202-0725. Astronomical Journal, 2005, 129, 1809-1817.	4.7	19
90	The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy. Astronomical Journal, 2005, 130, 2598-2612.	4.7	636

#	Article	IF	CITATIONS
91	Lateâ€Time Observations of the Afterglow and Environment of GRB 030329. Astrophysical Journal, 2005, 622, 986-990.	4.5	46
92	VLBA Observations ofz>4 Radio-loud Quasars. Astronomical Journal, 2004, 127, 587-591.	4.7	16
93	The Arecibo Galaxy Environment Survey - II. A H i view of the Abell cluster 1367 and its outskirts. Monthly Notices of the Royal Astronomical Society, 0, 383, 1519-1537.	4.4	44