Zhanglin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8697652/publications.pdf Version: 2024-02-01

ZHANCLIN CUO

#	Article	IF	CITATIONS
1	Electrochemical reaction mechanism of porous Zn2Ti3O8 as a high-performance pseudocapacitive anode for Li-ion batteries. Chinese Chemical Letters, 2022, 33, 4776-4780.	4.8	8
2	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	15.6	181
3	Formation of CsPbI ₃ γâ€Phase at 80 °C by Europiumâ€Assisted Snowplow Effect. Advanced Energy and Sustainability Research, 2021, 2, 2100091.	2.8	8
4	Dopantâ€Free Polymer HTMâ€Based CsPbl ₂ Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Advanced Functional Materials, 2021, 31, 2103614.	7.8	60
5	Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 33631-33637.	4.0	18
6	Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells. Carbon, 2020, 162, 267-272.	5.4	48
7	<i>>V</i> _{OC} Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI ₂ Br Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 9725-9734.	6.6	162
8	Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397.	5.2	25
9	Achievable high <i>V</i> _{oc} of carbon based all-inorganic CsPbIBr ₂ perovskite solar cells through interface engineering. Journal of Materials Chemistry A, 2019, 7, 1227-1232.	5.2	115
10	Bifunctional Dye Molecule in Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Efficiency Exceeding 10%. Solar Rrl, 2019, 3, 1900212.	3.1	64
11	Niobium Incorporation into CsPbI ₂ Br for Stable and Efficient All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 19994-20003.	4.0	106
12	Current progress in interfacial engineering of carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 8690-8699.	5.2	84
13	La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells. Organic Electronics, 2019, 73, 62-68.	1.4	53
14	Development of a Mixed Halide-chalcogenide Bismuth-based Perovskite MABil ₂ S with Small Bandgap and Wide Absorption Range. Chemistry Letters, 2019, 48, 249-252.	0.7	11
15	The Role of Lanthanum in a Nickel Oxideâ€Based Inverted Perovskite Solar Cell for Efficiency and Stability Improvement. ChemSusChem, 2019, 12, 518-526.	3.6	49
16	Low-temperature processed non-TiO ₂ electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4572-4589.	5.2	65
17	High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. Small, 2018, 14, e1802738.	5.2	193
18	Design of a novel and highly stable lead-free Cs ₂ NaBil ₆ double perovskite for photovoltaic application. Sustainable Energy and Fuels, 2018, 2, 2419-2428.	2.5	121

ZHANGLIN GUO

#	Article	IF	CITATIONS
19	Inâ€Situ Growth of a Featherâ€ŀike MnO ₂ Nanostructure on Carbon Paper for Highâ€Performance Rechargeable Sodiumâ€ŀon Batteries. ChemElectroChem, 2018, 5, 3266-3272.	1.7	16
20	Platelike Ag 2 Nb 4 O 11 mesocrystals: Soft chemical synthesis, formation mechanism and enhanced photocatalytic performance. Journal of Alloys and Compounds, 2016, 686, 48-54.	2.8	16
21	Soft chemical in situ synthesis, formation mechanism and electrochemical performances of 1D bead-like AgVO ₃ nanoarchitectures. Journal of Materials Chemistry A, 2015, 3, 18127-18135.	5.2	25
22	Controllable synthesis and morphology evolution from two-dimensions to one-dimension of layered K ₂ V ₆ O ₁₆ ·nH ₂ O. CrystEngComm, 2015, 17, 3777-3782.	1.3	11
23	Topotactic synthesis and photocatalytic performance of one-dimensional ZnNb ₂ O ₆ nanostructures and one-dimensional ZnNb ₂ O ₆ /KNbO ₃ hetero-nanostructures. RSC Advances, 2014, 4, 56637-56644.	1.7	14
24	Topotactic soft chemical synthesis and photocatalytic performance of one-dimensional AgNbO3 nanostructures. Materials Letters, 2014, 137, 110-112.	1.3	14
25	New 2D Materials for Highly Efficient Perovskite Solar Cells. , 0, , .		0
26	Why the gamma-phase of CsPbI3 can be formed at 80 C by adding Europium. , 0, , .		0