Lukas Gallmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8697453/publications.pdf

Version: 2024-02-01

184 papers 5,575 citations

⁷⁶¹⁹⁶
40
h-index

79541 73 g-index

188 all docs 188 docs citations

188 times ranked $\begin{array}{c} 3278 \\ \text{citing authors} \end{array}$

#	Article	IF	Citations
1	Few-Femtosecond Dynamics of Free-Free Opacity in Optically Heated Metals. Physical Review X, 2022, 12,	2.8	6
2	Comparison of 100-kHz Near-IR and Mid-IR Driven High-Harmonic Generation in the Water Window. , 2021, , .		0
3	Water-window high harmonic generation with 0.8-Âμm and 2.2-Âμm OPCPAs at 100 kHz. Optics Express, 2021, 29, 32996.	1.7	9
4	Comparison of 100-kHz Near-IR and Mid-IR Driven High-Harmonic Generation in the Water Window. , 2021, , .		0
5	Attosecond timing of the dynamical Franz–Keldysh effect. JPhys Photonics, 2020, 2, 025001.	2.2	13
6	High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Optics Express, 2020, 28, 40145.	1.7	17
7	Water window soft x-ray source enabled by a 25  W few-cycle 2.2 Âμm OPCPA at 100  kHz. Opt 168.	iça, 2020, 4.8	77
8	Attosecond screening dynamics mediated by electron localization in transition metals. Nature Physics, 2019, 15, 1145-1149.	6.5	59
9	High-Power and Sub-Two-Cycle 2.5 \hat{l} 4m Optical Parametric Chirped Pulse Amplification System. , 2019, , .		O
10	Ultrafast nuclear dynamics of the acetylene cation C2H2+ and its impact on the infrared probe pulse induced Câ€"H bond breaking efficiency. Physical Chemistry Chemical Physics, 2019, 21, 18380-18385.	1.3	3
11	Attosecond Electron Localization and Screening Dynamics in Metals. , 2019, , .		О
12	Optically Driven Attosecond Electron Dynamics in III-V Semiconductors. , 2019, , .		0
13	Reduction of laser-intensity-correlated noise in high-harmonic generation. Optics Express, 2019, 27, 7886.	1.7	9
14	Phase stabilization of an attosecond beamline combining two IR colors. Optics Express, 2019, 27, 22385.	1.7	10
15	Reduction of Laser-Intensity-Correlated Noise in High-Harmonic Generation. , 2019, , .		O
16	Sub-Two-Cycle High-Average-Power Pulses at 2.5 Âμm. , 2019, , .		0
17	Anisotropic photoemission time delays close to a Fano resonance. Nature Communications, 2018, 9, 955.	5.8	116
18	Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 114001.	0.6	32

#	Article	IF	CITATIONS
19	Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime. Physical Review A, 2018, 97, .	1.0	55
20	Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nature Physics, 2018, 14, 560-564.	6. 5	123
21	Role of intraband transitions in photocarrier generation. Physical Review B, 2018, 98, .	1.1	26
22	Decoupling phase-matching bandwidth and interaction geometry using non-collinear quasi-phase-matching gratings. Optics Express, 2018, 26, 6036.	1.7	10
23	Broadband and High Power Mid-Infrared Optical Parametric Amplification via Quasi-Phase-Matching Devices. , 2018, , .		1
24	High-power OPCPA generating 17 cycle pulses at 25 µm. Optics Express, 2018, 26, 26750.	1.7	32
25	Broadband Phase-Matching Using Tilted Quasi-Phase-Matching Gratings. , 2018, , .		0
26	High-Average-Power Few-Cycle Pulses at 2.5 νm., 2018, , .		0
27	Photoemission and photoionization time delays and rates. Structural Dynamics, 2017, 4, 061502.	0.9	39
28	Strong field transient manipulation of electronic states and bands. Structural Dynamics, 2017, 4, 061505.	0.9	5
29	Effective mass effect in attosecond electron transport. Optica, 2017, 4, 1492.	4.8	36
30	Gouy phase shift for annular beam profiles in attosecond experiments. Optics Express, 2017, 25, 3646.	1.7	13
31	Sub-cycle resolution of field-momentum transfer in non-dipole strong-field ionization. , 2017, , .		0
32	Ultra-broadband optical parametric chirped-pulse amplifier generating 9.1 W at 2.2 νm., 2017, , .		0
33	Gouy phase effects in attosecond photoemission delay measurements using truncated beams. , 2017, , .		0
34	Gouy Phase Shift for Annularly Truncated Beam Profiles in Attosecond Pump-Probe Measurements. , $2017, , .$		0
35	Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media. Optics Express, 2016, 24, 15940.	1.7	12
36	Comparison of attosecond streaking and RABBITT. Optics Express, 2016, 24, 29060.	1.7	48

#	Article	IF	CITATIONS
37	Angular dependence of photoemission time delay in helium. Physical Review A, 2016, 94, .	1.0	119
38	Ultrafast Relaxation Dynamics of the Ethylene Cation C ₂ H ₄ ⁺ . Journal of Physical Chemistry Letters, 2016, 7, 1901-1906.	2.1	23
39	Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science, 2016, 353, 916-919.	6.0	198
40	Access to phases of coherent phonon excitations by femtosecond ultraviolet photoelectron diffraction. Physical Review B, 2016, 94, .	1.1	10
41	Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime. Scientific Reports, 2016, 6, 35877.	1.6	42
42	Non-Dipole Effects on Rescattered Photoelectrons from Strong-Field Ionization with Elliptical Polarization. , $2016, \dots$		0
43	Mid-Infrared OPCPA Based on Two-Dimensional Quasi-Phase-Matching Devices. , 2016, , .		0
44	Photoemission Time Delays from a Cu(111)-Surface: Validity of Macroscopic Laws for Probe-Field Effects. , 2016, , .		0
45	Non-Dipole Effects on Rescattered Photoelectrons from Strong-Field Ionization with Elliptical Polarization. , 2016, , .		0
46	Direct Observation of a Sub-Femtosecond Optical Response in the Diamond Conduction Band., 2016,,.		0
47	New Insights into Ultrafast Relaxation Dynamics of the Ethylene Cation C $_2H$ $_4$ $^++.$, 2016 , , .		0
48	Observation of Femtosecond Dynamical Franz-Keldysh Effect in Polycrystalline Diamond., 2016,,.		0
49	Resonance Effects in Photoemission Time Delays. Physical Review Letters, 2015, 115, 133001.	2.9	88
50	Light-Matter Interaction at Surfaces in the Spatiotemporal Limit of Macroscopic Models. Physical Review Letters, 2015, 115, 137401.	2.9	46
51	Anisotropic emission in quantum-beat spectroscopy of helium excited states. Physical Review A, 2015, 91, .	1.0	14
52	Theoretical analysis of attosecond quantum beat spectroscopy of helium excited states. Journal of Physics: Conference Series, 2015, 635, 092141.	0.3	0
53	Time delay anisotropy in photoelectron emission from isotropic helium. Journal of Physics: Conference Series, 2015, 635, 092089.	0.3	1
54	Ptychographic reconstruction of attosecond pulses. Optics Express, 2015, 23, 29502.	1.7	71

#	Article	IF	Citations
55	Multiphoton transitions for delay-zero calibration in attosecond spectroscopy. New Journal of Physics, 2015, 17, 013007.	1.2	12
56	Energy-Dependent Photoemission Time Delays of Noble Gas Atoms Using Coincidence Attosecond Streaking. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-7.	1.9	13
57	Semi-classical approach to compute RABBITT traces in multi-dimensional complex field distributions. Optics Express, 2015, 23, 8867.	1.7	18
58	Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica, 2015, 2, 405.	4.8	116
59	Photoionization Time Delay Dynamics in Noble Gase. , 2015, , .		1
60	Multiphoton Transitions for Robust Delay-Zero Calibration in Attosecond Transient Absorption. Springer Proceedings in Physics, 2015, , 83-86.	0.1	1
61	Broadband 2D-QPM Frequency Domain OPA. , 2015, , .		O
62	A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. Review of Scientific Instruments, 2014, 85, 103117.	0.6	26
63	Combining attosecond XUV pulses with coincidence spectroscopy. Review of Scientific Instruments, 2014, 85, 103113.	0.6	62
64	Ultra-Broadband Non-Collinear Quasi-Phase-Matching in a Hybrid Mid-Infrared OPCPA System. , 2014, , .		0
65	A novel technique to study energy-dependent photoemission delays in solids with attosecond resolution. , 2014, , .		O
66	Studying Momentum Distributions in all Aspects Reveals Important Insight. , 2014, , .		0
67	Following Attosecond Photoemission from Solids Using Interferometry. , 2014, , .		O
68	Ultrafast resolution of tunneling delay time. Optica, 2014, 1, 343.	4.8	234
69	Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA. Optics Express, 2014, 22, 20798.	1.7	76
70	Revealing the time-dependent polarization of ultrashort pulses with sub-cycle resolution. Optics Express, 2014, 22, 26967.	1.7	11
71	Versatile attosecond beamline in a two-foci configuration for simultaneous time-resolved measurements. Review of Scientific Instruments, 2014, 85, 013113.	0.6	57
72	Breakdown of the Dipole Approximation in Strong-Field Ionization. Physical Review Letters, 2014, 113, 243001.	2.9	152

#	Article	IF	CITATIONS
73	Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings. Optics Express, 2014, 22, 9627.	1.7	19
74	OPCPA Systems Based on Chirped Quasi-Phase-Matching Gratings: Physics and Design Constraints. , 2014, , .		0
75	Sub-4-Cycle Pulses Directly From an All-Collinear, High-Repetition-Rate, Mid-IR OPCPA. , 2014, , .		O
76	Combining Attosecond Science with Coincidence Momentum Spectroscopy. , 2014, , .		0
77	Ultra-Broadband Mid-IR OPCPA Schemes Enabled By Quasi-Phase-Matching. , 2014, , .		O
78	Exploring characteristics of strong-field ionization dynamics in the mid-infrared regime. , 2014, , .		0
79	Multiphoton Transitions for Robust Delay-Zero Calibration in Attosecond Transient Absorption. , 2014, , .		O
80	Accessing Energy-Dependent Photoemission Delays in Solids. , 2014, , .		0
81	Quarter-Laser-Cycle Oscillations in Attosecond Transient Absorption for Robust Delay Zero Calibration. , 2014, , .		O
82	Breakdown of dipole approximation in strong field ionization. , 2014, , .		0
83	Probing Nonadiabatic Effects in Strong-Field Tunnel Ionization. Physical Review Letters, 2013, 111, 103003.	2.9	126
84	Apodization of chirped quasi-phasematching devices. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1551.	0.9	71
85	Design of quasi-phasematching gratings via convex optimization. Optics Express, 2013, 21, 10139.	1.7	14
86	Transferring the attoclock technique to velocity map imaging. Optics Express, 2013, 21, 21981.	1.7	22
87	Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 34Âμm. Optics Letters, 2013, 38, 4265.	1.7	62
88	Role of electron wavepacket interference in the optical response of helium atoms. New Journal of Physics, 2013, 15, 103010.	1.2	22
89	Tunneling time in Ultrafast science is real and probabilistic. , 2013, , .		0
90	Optical response of electron wave-packet interference revisited. , 2013, , .		1

#	Article	IF	Citations
91	Interrupted virtual single-photon transition. , 2013, , .		O
92	Virtual single-photon transition interrupted: Time-gated optical gain and loss. Physical Review A, 2013, 88, .	1.0	13
93	Resolving intra-atomic electron dynamics with attosecond transient absorption spectroscopy. Molecular Physics, 2013, 111, 2243-2250.	0.8	28
94	Surface RABBITT for determination of absolute ionization phase: A novel route towards absolute photoemission delays. , 2013, , .		0
95	New design opportunities for ultrafast quasi-phasematching devices. , 2013, , .		0
96	Tunneling Time in Ultrafast Science is Real and Probabilistic. , 2013, , .		0
97	Temporal and spectral evolution of an interrupted virtual single-photon transition: creation of optical gain and loss. EPJ Web of Conferences, 2013, 41, 02024.	0.1	0
98	New Design Opportunities for Ultrafast Devices Based On Quasi-Phasematching. , 2013, , .		0
99	Probing Electron Wave-packet Interference. , 2013, , .		0
100	Sub-4-Cycle Laser Pulses from a High-Repetition-Rate, Mid-Infrared OPCPA at 3.4 μm., 2013, , .		0
101	Creation of Optical Gain and Absorption via a Virtual Single-photon Transition. , 2013, , .		0
102	Role of apodization in optical parametric amplifiers based on aperiodic quasi-phasematching gratings. Optics Express, 2012, 20, 18066.	1.7	27
103	75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA. Optics Express, 2012, 20, 26888.	1.7	41
104	Attosecond Science: Recent Highlights and Future Trends. Annual Review of Physical Chemistry, 2012, 63, 447-469.	4.8	258
105	Electron Wavepacket Interference Observed by Attosecond Transient Absorption Spectroscopy. Springer Proceedings in Physics, 2012, , 199-201.	0.1	0
106	High repetition rate, 93-MW mid-infrared optical parametric-chirped pulse amplifier based on apodized aperiodically poled Mg:LiNbO3., 2012, , .		0
107	High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping. Applied Physics B: Lasers and Optics, 2011, 103, 5-8.	1.1	27
108	Attosecond Electron Wave-Packet Interference Observed by Transient Absorption. Physical Review Letters, 2011, 106, 123601.	2.9	153

#	Article	IF	CITATIONS
109	Direct optical observation of attosecond electron wavepacket interference., 2011,,.		O
110	50-MW, 12-ps Nd:YVO <inf>4</inf> slab amplifier for OPCPA pumping. , 2011, , .		0
111	High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO <inf>3</inf> . , 2011, , .		0
112	High-Power Mid-Infrared Optical Parametric Chirped-Pulse Amplifier Based on Aperiodically Poled Mg:LiNbO3. , 2011, , .		0
113	Transient Absorption Spectroscopy with Attosecond Pulse Trains. , 2011, , .		0
114	50-MW, 12-ps Nd:YVO4 slab amplifier for OPCPA pumping. , 2011, , .		0
115	Aperiodic Quasi-Phase-Matched Gratings for Efficient and Broadband Optical Parametric Chirped Pulse Amplification. , 2010, , .		0
116	Unexpected gain. Nature Physics, 2010, 6, 406-407.	6.5	4
117	Spatial fingerprint of quantum path interferences in high order harmonic generation. Optics Express, 2010, 18, 2987.	1.7	35
118	Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO_3. Optics Letters, 2010, 35, 2340.	1.7	73
119	Ultra-broadband optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3 in the mid-infrared. , 2010, , .		0
120	Attosecond transient absorption around the ionization threshold of helium. , 2010, , .		0
121	Ultrabroadband Optical Parametric Chirped-Pulse Amplifier in the Mid-Infrared Using Aperiodically Poled Mg:LiNbO3., 2010,,.		0
122	Harmonic continua by chirp assisted polarization gating. , 2010, , .		0
123	Ultra-broadband optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3 in the mid-infrared at high repetition rates. , 2010 , , .		0
124	Spectral Signature of Short Attosecond Pulse Trains. Physical Review Letters, 2009, 102, 083002.	2.9	29
125	Theoretical and experimental analysis of quantum path interferences in high-order harmonic generation. Physical Review A, 2009, 80, .	1.0	44
126	$1\hbox{-}\&\#x00B5; J, Sub-100\hbox{-}fs$ pulses from a high-repetition-rate optical parametric chirped-pulse amplifier in the mid-infrared. , 2009, , .		1

#	Article	IF	Citations
127	High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared. Applied Physics B: Lasers and Optics, 2009, 96, 257-269.	1.1	22
128	High-repetition-rate optical parametric chirped-pulse amplifier producing 1-µJ, sub-100-fs pulses in the mid-infrared. Optics Express, 2009, 17, 1340.	1.7	44
129	lonization effects on spectral signatures of quantum-path interference in high-harmonic generation. Optics Express, 2009, 17, 5716.	1.7	21
130	Study of quantum-path interferences in the high harmonic generation process. Springer Series in Chemical Physics, 2009, , 27-29.	0.2	0
131	Quantum Path Interferences in High-Harmonic Generation: Ionization Effects and Spatial Structure. , 2009, , .		0
132	Quantum Path Interferences in High-Order Harmonic Generation. Physical Review Letters, 2008, 100, 143902.	2.9	177
133	Spatio-Temporal Characterization of Sub-5-fs Pulses Obtained by Filamentation., 2007,,.		1
134	Spatio-temporal characterization of few-cycle pulses obtained by filamentation. Optics Express, 2007, 15, 5394.	1.7	118
135	Generating coherent broadband continuum soft-x-ray radiation by attosecond ionization gating. Optics Express, 2007, 15, 17120.	1.7	67
136	Spatio-Temporal and Interferometric Characterization of Sub-5-fs Pulses Obtained by Filamentation. , 2007, , .		0
137	Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime. Applied Physics B: Lasers and Optics, 2007, 86, 561-566.	1.1	41
138	Multi-Cycle Driven Isolated Attosecond Pulse Generation. Springer Series in Chemical Physics, 2007, , 54-56.	0.2	0
139	Heterodyne Mixing of Laser Fields for Temporal Gating of High-Order Harmonic Generation. Physical Review Letters, 2006, 97, 163901.	2.9	139
140	Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field. Optics Letters, 2006, 31, 975.	1.7	198
141	Circular phase mask for control and stabilization of single optical filaments. Optics Letters, 2006, 31, 2326.	1.7	48
142	Isolated attosecond pulses using multi-cycle drivers and a weak second-harmonic field., 2006,,.		0
143	Control of optical filaments with simple phase masks and its application to few-cycle pulse generation. , 2006, , .		0
144	Multi-Cycle Driven Isolated Attosecond Pulse Generation. , 2006, , .		0

#	Article	IF	CITATIONS
145	Direct comparison of the hollow-core fiber and filamentation techniques for few-cycle pulse generation., 2006,,.		0
146	Phase Mask Control and Stabilization of Optical Filamentation. , 2006, , .		0
147	The OPTEL Terminal Development Programme - Enabling Technologies for Future Optical Crosslink Applications. , 2003, , .		3
148	Fluoride semiconductor saturable-absorber mirror for ultrashort pulse generation. Optics Letters, 2002, 27, 1845.	1.7	11
149	Sub-6-fs blue pulses generated by quasi-phase-matching second-harmonic generation pulse compression. Applied Physics B: Lasers and Optics, 2002, 74, s237-s243.	1.1	10
150	Few-optical-cycle laser pulses by OPA: broadband chirped mirror compression and SPIDER characterization. Applied Physics B: Lasers and Optics, 2002, 74, s245-s251.	1.1	26
151	Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor. Applied Physics B: Lasers and Optics, 2002, 74, s219-s224.	1.1	35
152	Spatially resolved amplitude and phase characterization of femtosecond optical pulses. Optics Letters, 2001, 26, 96.	1.7	74
153	Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings. Optics Letters, 2001, 26, 614.	1.7	38
154	Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors. Optics Letters, 2001, 26, 1155.	1.7	125
155	Generation of sub-6-fs blue pulses by QPM-SHG pulse compression. , 2001, , .		O
156	Carrier-envelope offset frequency dynamics of a modelocked Ti:sapphire laser., 2001,,.		0
157	SPIDER characterization of sub-6-fs pulses in the visible. , 2001, , .		O
158	Novel AlGaAs/CaF2 SESAM Device for Ultrashort Pulse Generation. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
159	New directions in sub-10-fs optical pulse generation. Comptes Rendus Physique, 2001, 2, 1389-1406.	0.1	0
160	GaAs absorber layer growth for broadband AlGaAs/fluoride SESAMs. Journal of Crystal Growth, 2001, 227-228, 172-176.	0.7	6
161	Back-side coated chirped mirrors for dispersion compensation over one octave., 2001,,.		0
162	Fluoride SESAM for ultrabroadband pulse generation. , 2001, , .		0

#	Article	IF	Citations
163	Smooth dispersion compensation: novel chirped mirrors with suppressed dispersion oscillations. Springer Series in Chemical Physics, 2001, , 62-64.	0.2	0
164	Techniques for the characterization of sub-10-fs optical pulses: a comparison. Applied Physics B: Lasers and Optics, 2000, 70, S67-S75.	1.1	67
165	Sub-6-fs pulses from a SESAM-assisted Kerr-lens modelocked Ti:sapphire laser: at the frontiers of ultrashort pulse generation. Applied Physics B: Lasers and Optics, 2000, 70, S5-S12.	1.1	37
166	Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics. Applied Physics B: Lasers and Optics, 2000, 71, 509-522.	1.1	87
167	Pulse compression in the visible over 200-THz bandwidth using only chirped mirrors. , 2000, , .		0
168	Spatially resolved amplitude and phase characterization of ultrashort optical pulses using SPIDER. , 2000, , .		0
169	Collinear type-II SHG-FROG pulse characterization in the sub-10-fs regime. , 2000, , .		0
170	Sensitive characterization of phase and amplitude semiconductor nonlinearities for broadband 20 fs excitation. Journal of Applied Physics, 2000, 88, 1187-1189.	1.1	2
171	Sensitive characterization of ultrafast phase and amplitude nonlinearities for broadband semiconductor excitation. , 2000, , .		0
172	Collinear type II second-harmonic-generation frequency-resolved optical gating for the characterization of sub-10-fs optical pulses. Optics Letters, 2000, 25, 269.	1.7	27
173	Smooth dispersion compensation over one octave: novel chirped mirrors with suppressed dispersion oscillations., 2000,,.		0
174	Passively modelocked diode-pumped erbium-ytterbium glass laser using a semiconductor saturable absorber mirror. Electronics Letters, 1999, 35, 567.	0.5	16
175	Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. Science, 1999, 286, 1507-1512.	6.0	362
176	Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Optics Letters, 1999, 24, 631.	1.7	378
177	Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Optics Letters, 1999, 24, 1314.	1.7	177
178	Pushing the frontiers: generation and full characterization of pulses in the two-cycle regime., 0,,.		0
179	Pulses in the two-cycle regime from a SESAM-assisted KLM Ti:sapphire laser and sub 10-fs pulse characterization. , 0, , .		0
180	Novel semiconductor materials and saturable absorber mirrors for sub-10-fs pulse generation. , 0, , .		0

#	Article	IF	CITATIONS
181	Spatially resolved full characterization of sub-10-fs pulses using SPIDER. , 0, , .		O
182	Dispersion compensation over 200 THz in the visible using only chirped mirrors in an optical parametric amplifier. , 0, , .		O
183	Carrier-envelope offset dynamics and stabilization of femtosecond lasers. , 0, , .		О
184	System concept of an integrated RF-optical transceiver for deep space TT&C., 0,,.		O