Zengyi Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869683/publications.pdf

Version: 2024-02-01

36	2,079	23 h-index	34
papers	citations		g-index
39	39	39	2378
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Research, 2009, 37, e16-e16.	6.5	568
2	Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in <i>Saccharomyces cerevisiae</i> Biotechnology and Bioengineering, 2012, 109, 2082-2092.	1.7	166
3	Refactoring the Silent Spectinabilin Gene Cluster Using a Plug-and-Play Scaffold. ACS Synthetic Biology, 2013, 2, 662-669.	1.9	146
4	Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angewandte Chemie - International Edition, 2016, 55, 2368-2373.	7.2	112
5	Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metabolic Engineering, 2020, 58, 94-132.	3.6	82
6	Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Molecular BioSystems, 2011, 7, 1056.	2.9	79
7	Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metabolic Engineering, 2017, 42, 134-144.	3.6	79
8	Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microbial Cell Factories, 2014, 13, 121.	1.9	74
9	Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1611-1624.	1.4	65
10	Investigating strain dependency in the production of aromatic compounds in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2016, 113, 2676-2685.	1.7	53
11	Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metabolic Engineering Communications, 2020, 10, e00124.	1.9	53
12	Innovating a Nonconventional Yeast Platform for Producing Shikimate as the Building Block of High-Value Aromatics. ACS Synthetic Biology, 2017, 6, 29-38.	1.9	49
13	Biosynthesis of 2-Hydroxyethylphosphonate, an Unexpected Intermediate Common to Multiple Phosphonate Biosynthetic Pathways. Journal of Biological Chemistry, 2008, 283, 23161-23168.	1.6	45
14	Electrochemical Conversion of Biologically Produced Muconic Acid: Key Considerations for Scale-Up and Corresponding Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7098-7109.	3.2	45
15	Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering. ACS Synthetic Biology, 2017, 6, 1545-1553.	1.9	45
16	A photoacoustic immunoassay for biomarker detection. Biosensors and Bioelectronics, 2016, 85, 261-266.	5.3	43
17	Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Frontiers in Microbiology, 2018, 9, 3264.	1.5	42
18	CRISPR–Mediated Genome Editing and Gene Repression in <i>Scheffersomyces stipitis</i> Biotechnology Journal, 2018, 13, e1700598.	1.8	39

#	Article	IF	CITATIONS
19	Construction and Engineering of Large Biochemical Pathways via DNA Assembler. Methods in Molecular Biology, 2013, 1073, 85-106.	0.4	31
20	DNA Assembler. Methods in Enzymology, 2012, 517, 203-224.	0.4	30
21	A genetic toolbox for metabolic engineering of Issatchenkia orientalis. Metabolic Engineering, 2020, 59, 87-97.	3.6	30
22	Manipulating Natural Product Biosynthetic Pathways via DNA Assembler. Current Protocols in Chemical Biology, 2014, 6, 65-100.	1.7	29
23	DNA Assembler Method for Construction of Zeaxanthin-Producing Strains of Saccharomyces cerevisiae. Methods in Molecular Biology, 2012, 898, 251-262.	0.4	25
24	Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angewandte Chemie, 2016, 128, 2414-2419.	1.6	24
25	Renewable fatty acid ester production in Clostridium. Nature Communications, 2021, 12, 4368.	5.8	24
26	Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metabolic Engineering, 2020, 61, 120-130.	3.6	23
27	Microbial synthesis of wax esters. Metabolic Engineering, 2021, 67, 428-442.	3.6	22
28	Expression of tabersonine 16â€hydroxylase and 16â€hydroxytabersonineâ€Oâ€methyltransferase in <i>Catharanthus roseus</i> hairy roots. Biotechnology and Bioengineering, 2018, 115, 673-683.	1.7	20
29	A repackaged CRISPR platform increases homology-directed repair for yeast engineering. Nature Chemical Biology, 2022, 18, 38-46.	3.9	15
30	Rapid Isolation of Centromeres from <i>Scheffersomyces stipitis</i> . ACS Synthetic Biology, 2017, 6, 2028-2034.	1.9	10
31	Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synthetic Biology, 2020, 9, 1736-1752.	1.9	6
32	Modulating Pathway Performance by Perturbing Local Genetic Context. ACS Synthetic Biology, 2020, 9, 706-717.	1.9	2
33	Titelbild: Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar (Angew. Chem. 7/2016). Angewandte Chemie, 2016, 128, 2317-2317.	1.6	1
34	Revisiting the unique structure of autonomously replicating sequences in Yarrowia lipolytica and its role in pathway engineering. Applied Microbiology and Biotechnology, 2021, 105, 5959-5972.	1.7	1
35	Correlative Microbially-Assisted Imaging of Cellulose Deconstruction with Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 382-383.	0.2	0
36	Introduction to Special Issue on"Frontiers in Industrial Microbiology and Biotechnology 2020― Journal of Industrial Microbiology and Biotechnology, 2020, 47, 621-622.	1.4	0