Thomas J Givnish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696797/publications.pdf

Version: 2024-02-01

80	8,721	45	77
papers	citations	h-index	g-index
82	82	82	9435
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Short-distance gene flow and morphological divergence in (i) Eschscholzia parishii (i) (Papaveraceae): implications for speciation in desert winter annuals. Botanical Journal of the Linnean Society, 2022, 200, 255-269.	1.6	1
2	Turning to the dark side. Nature Plants, 2022, 8, 324-325.	9.3	0
3	Hydroscapes, hydroscape plasticityÂand relationships to functional traits and mesophyll photosynthetic sensitivity to leaf water potential in <i>Eucalyptus</i> species. Plant, Cell and Environment, 2022, 45, 2573-2588.	5.7	8
4	Mistletoes and their eucalypt hosts differ in the response of leaf functional traits to climatic moisture supply. Oecologia, 2021, 195, 759-771.	2.0	10
5	Mesophyll photosynthetic sensitivity to leaf water potential in <i>Eucalyptus</i> : a new dimension of plant adaptation to native moisture supply. New Phytologist, 2021, 230, 1844-1855.	7.3	9
6	A new carnivorous plant lineage (<i>Triantha</i>) with a unique sticky-inflorescence trap. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
7	Fineâ€scale environmental heterogeneity and spatial niche partitioning among springâ€flowering forest herbs. American Journal of Botany, 2021, 108, 63-73.	1.7	9
8	Adaptive associations among life history, reproductive traits, environment, and origin in the Wisconsin angiosperm flora. American Journal of Botany, 2020, 107, 1677-1692.	1.7	4
9	The Adaptive Geometry of Trees Revisited. American Naturalist, 2020, 195, 935-947.	2.1	6
10	Plant distribution, stature, rarity, and diversity in a patterned calcareous fen: tests of geochemical and leafâ€height models. American Journal of Botany, 2019, 106, 807-820.	1.7	7
11	Spatial phylogenetics reveals evolutionary constraints on the assembly of a large regional flora. American Journal of Botany, 2018, 105, 1938-1950.	1.7	21
12	Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ€gene analyses, and a functional model for the origin of monocots. American Journal of Botany, 2018, 105, 1888-1910.	1.7	161
13	Evolution of carnivory in angiosperms. , 2018, , .		14
14	Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. , $2018, \ldots$		8
15	Tree diversity in relation to tree height: alternative perspectives. Ecology Letters, 2017, 20, 395-397.	6.4	4
16	Causes of ecological gradients in leaf margin entirety: Evaluating the roles of biomechanics, hydraulics, vein geometry, and bud packing. American Journal of Botany, 2017, 104, 354-366.	1.7	29
17	Tracking lags in historical plant species' shifts in relation to regional climate change. Global Change Biology, 2017, 23, 1305-1315.	9.5	92
18	A New World of plants. Science, 2017, 358, 1535-1536.	12.6	8

#	Article	IF	Citations
19	Biogeography of the cosmopolitan sedges (Cyperaceae) and the areaâ€richness correlation in plants. Journal of Biogeography, 2016, 43, 1893-1904.	3.0	79
20	Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. Journal of Biogeography, 2016, 43, 1905-1916.	3.0	127
21	Plastid phylogenomics and molecular evolution of Alismatales. Cladistics, 2016, 32, 160-178.	3.3	98
22	Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics, 2016, 32, 581-605.	3.3	61
23	A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution, 2016, 8, evw060.	2.5	117
24	The pace of plant community change is accelerating in remnant prairies. Science Advances, 2016, 2, e1500975.	10.3	57
25	Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Molecular Phylogenetics and Evolution, 2016, 95, 183-195.	2.7	40
26	Inbreeding, low genetic diversity, and spatial genetic structure in the endemic Hawaiian lobeliads Clermontia fauriei and Cyanea pilosa ssp. longipedunculata. Conservation Genetics, 2016, 17, 497-502.	1.5	15
27	Adaptive radiation versus â€radiation' and â€explosive diversification': why conceptual distinctions are fundamental to understanding evolution. New Phytologist, 2015, 207, 297-303.	7.3	187
28	New evidence on the origin of carnivorous plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10-11.	7.1	79
29	Lightâ€induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist, 2015, 207, 43-58.	7.3	77
30	Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151553.	2.6	361
31	Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies. PLoS ONE, 2015, 10, e0137963.	2.5	11
32	Leaf form and photosynthetic physiology of <i><scp>D</scp>ryopteris</i> species distributed along light gradients in eastern <scp>N</scp> orth <scp>A</scp> merica. Functional Ecology, 2014, 28, 108-123.	3.6	33
33	Paramagnetic Cellulose DNA Isolation Improves DNA Yield and Quality Among Diverse Plant Taxa. Applications in Plant Sciences, 2014, 2, 1400048.	2.1	24
34	Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution, 2014, 71, 55-78.	2.7	333
35	Determinants of maximum tree height in <i>Eucalyptus</i> species along a rainfall gradient in Victoria, Australia. Ecology, 2014, 95, 2991-3007.	3.2	97
36	Spatial genetic structure in four understory <i>Psychotria</i> species (Rubiaceae) and implications for tropical forest diversity. American Journal of Botany, 2014, 101, 1189-1199.	1.7	27

#	Article	IF	Citations
37	Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132944.	2.6	27
38	Spatial scales of genetic structure and gene flow in <i>Calochortus albus</i> (Liliaceae). Ecology and Evolution, 2013, 3, 1461-1470.	1.9	4
39	Phylogeny, Floral Evolution, and Inter-Island Dispersal in Hawaiian Clermontia (Campanulaceae) Based on ISSR Variation and Plastid Spacer Sequences. PLoS ONE, 2013, 8, e62566.	2.5	10
40	Phylogeny, divergence times, and historical biogeography of New WorldDryopteris(Dryopteridaceae). American Journal of Botany, 2012, 99, 730-750.	1.7	68
41	Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: Rates, drivers, and sources of error. Journal of Geophysical Research, 2012, 117, .	3.3	55
42	Recent and Historic Drivers of Landscape Change in the Everglades Ridge, Slough, and Tree Island Mosaic. Critical Reviews in Environmental Science and Technology, 2011, 41, 344-381.	12.8	62
43	Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight″ocus plastid phylogeny. American Journal of Botany, 2011, 98, 872-895.	1.7	401
44	Giant lobelias exemplify convergent evolution. BMC Biology, 2010, 8, 3.	3.8	16
45	Ecology of plant speciation. Taxon, 2010, 59, 1326-1366.	0.7	241
46	Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 584-616.	1.3	202
47	Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 407-416.	2.6	312
48	Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecology and Biogeography, 2008, 17, 384-402.	5.8	82
49	Leaf phenology in relation to canopy closure in southern Appalachian trees. American Journal of Botany, 2008, 95, 1395-1407.	1.7	63
50	Photoprotection of PSII in Hawaiian lobeliads from diverse light environments. Functional Plant Biology, 2008, 35, 595.	2.1	10
51	Spatial and temporal patterns of recent forest encroachment in montane grasslands of the Valles Caldera, New Mexico, USA. Journal of Biogeography, 2007, 34, 914-927.	3.0	90
52	Gradient analysis of reversed treelines and grasslands of the Valles Caldera, New Mexico. Journal of Vegetation Science, 2007, 18, 43-54.	2.2	33
53	Gradient analysis of reversed treelines and grasslands of the Valles Caldera, New Mexico. Journal of Vegetation Science, 2007, 18, 43.	2.2	4
54	Multigene Analyses of Monocot Relationships. Aliso, 2006, 22, 63-75.	0.2	164

#	Article	IF	CITATIONS
	Bromeliaceae: Profile of an Adaptive Radiation.—D. H. Benzing (with contributions from B. Bennet, G.) Tj ETQq1	1 0.78431	4 rgBT /Ove
55	Cambridge, U.K. xii + 690 pp. ISBN 0–521–43031–3. \$160.00 (hard cover) Systematic Biology, 2005, 54, 340-344.	5.6	3
56	Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1481-1490.	2.6	100
57	Population genetics and phylogeography of endangered Oxytropis campestris var. chartacea and relatives: arctic-alpine disjuncts in eastern North America. Molecular Ecology, 2004, 13, 3657-3673.	3.9	19
58	Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 2004, 164, 493-504.	7.3	227
59	Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytologist, 2004, 161, 253-264.	7.3	84
60	Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and wholeâ€plant compensation points. American Journal of Botany, 2004, 91, 228-246.	1.7	148
61	Ancient Vicariance or Recent Longâ€Distance Dispersal? Inferences about Phylogeny and South American–African Disjunctions in Rapateaceae and Bromeliaceae Based on ndhF Sequence Data. International Journal of Plant Sciences, 2004, 165, S35-S54.	1.3	187
62	PHYLOGENY, CONCERTED CONVERGENCE, AND PHYLOGENETIC NICHE CONSERVATISM IN THE CORE LILIALES: INSIGHTS FROM rbcL AND ndhF SEQUENCE DATA. Evolution; International Journal of Organic Evolution, 2002, 56, 233-252.	2.3	153
63	Ecological constraints on the evolution of plasticity in plants. Evolutionary Ecology, 2002, 16, 213-242.	1.2	110
64	Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 2002, 36, .	1.3	399
65	GRADIENTS IN THE COMPOSITION, STRUCTURE, AND DIVERSITY OF REMNANT OAK SAVANNAS IN SOUTHERN WISCONSIN. Ecological Monographs, 1999, 69, 353-374.	5.4	128
66	On the causes of gradients in tropical tree diversity. Journal of Ecology, 1999, 87, 193-210.	4.0	351
67	Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytologist, 1998, 138, 315-325.	7.3	114
68	Distribution of black spruce versus eastern larch along peatland gradients: relationship to relative stature, growth rate, and shade tolerance. Canadian Journal of Botany, 1996, 74, 1514-1532.	1.1	31
69	Plant Stems., 1995,, 3-49.		151
70	Does diversity beget stability?. Nature, 1994, 371, 113-114.	27.8	141
71	COMPARATIVE STUDIES OF LEAF FORM: ASSESSING THE RELATIVE ROLES OF SELECTIVE PRESSURES AND PHYLOGENETIC CONSTRAINTS. New Phytologist, 1987, 106, 131-160.	7.3	510
72	Fire adaptation in Neblinaria celiae (Theaceae), a high-elevation rosette shrub endemic to a wet equatorial tepui. Oecologia, 1986, 70, 481-485.	2.0	28

#	ARTICLE	IF	CITATION
73	Absorptive Trichomes in Brocchinia reducta (Bromeliaceae) and Their Evolutionary and Systematic Significance. Systematic Botany, 1985, 10, 81.	0.5	56
74	Carnivory in the Bromeliad Brocchinia reducta, with a Cost/Benefit Model for the General Restriction of Carnivorous Plants to Sunny, Moist, Nutrient-Poor Habitats. American Naturalist, 1984, 124, 479-497.	2.1	327
75	Outcrossing Versus Ecological Constraints in the Evolution of Dioecy. American Naturalist, 1982, 119, 849-865.	2.1	101
76	On the Adaptive Significance of Leaf Height in Forest Herbs. American Naturalist, 1982, 120, 353-381.	2.1	387
77	SEROTINY, GEOGRAPHY, AND FIRE IN THE PINE BARRENS OF NEW JERSEY. Evolution; International Journal of Organic Evolution, 1981, 35, 101-123.	2.3	81
78	ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF BREEDING SYSTEMS IN SEED PLANTS: DIOECY AND DISPERSAL IN GYMNOSPERMS. Evolution; International Journal of Organic Evolution, 1980, 34, 959-972.	2.3	178
79	On the Adaptive Significance of Leaf Form. , 1979, , 375-407.		244
80	Sizes and Shapes of Liane Leaves. American Naturalist, 1976, 110, 743-778.	2.1	338