
Anna Lewandowska-Andralojc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696714/publications.pdf

Version: 2024-02-01

Anna

#	Article	IF	CITATIONS
1	Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands. Angewandte Chemie - International Edition, 2016, 55, 8067-8071.	13.8	67
2	Mechanistic Studies of Hydrogen Evolution in Aqueous Solution Catalyzed by a Tertpyridine–Amine Cobalt Complex. Inorganic Chemistry, 2015, 54, 4310-4321.	4.0	64
3	Mechanism of the Quenching of the Tris(bipyridine)ruthenium(II) Emission by Persulfate: Implications for Photoinduced Oxidation Reactions. Journal of Physical Chemistry A, 2013, 117, 10311-10319.	2.5	63
4	Efficient water oxidation with organometallic iridium complexes as precatalysts. Physical Chemistry Chemical Physics, 2014, 16, 11976.	2.8	63
5	Striking Differences in Properties of Geometric Isomers of [Ir(tpy)(ppy)H] ⁺ : Experimental and Computational Studies of their Hydricities, Interaction with CO ₂ , and Photochemistry. Angewandte Chemie - International Edition, 2015, 54, 14128-14132.	13.8	51
6	Enabling light-driven water oxidation via a low-energy RuIVĩ€O intermediate. Physical Chemistry Chemical Physics, 2013, 15, 14058.	2.8	35
7	Graphene Oxide Functionalized with Cationic Porphyrins as Materials for the Photodegradation of Rhodamine B. Journal of Physical Chemistry C, 2020, 124, 15769-15780.	3.1	29
8	Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling. Journal of the American Chemical Society, 2014, 136, 3572-3578.	13.7	25
9	Noncovalent Porphyrin–Graphene Oxide Nanohybrids: The pH-Dependent Behavior. Journal of Physical Chemistry C, 2019, 123, 3368-3380.	3.1	25
10	Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Scientific Reports, 2021, 11, 7977.	3.3	25
11	Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands. Angewandte Chemie, 2016, 128, 8199-8203.	2.0	22
12	Five Major Sins in Fluorescence Spectroscopy of Light-Harvesting Hybrid Materials. ACS Energy Letters, 2019, 4, 1898-1901.	17.4	21
13	How Eosin Y/Graphene Oxide-Based Materials Can Improve Efficiency of Light-Driven Hydrogen Generation: Mechanistic Aspects. Journal of Physical Chemistry C, 2020, 124, 2747-2755.	3.1	20
14	Cationic Porphyrinâ€Graphene Oxide Hybrid: Donorâ€Acceptor Composite for Efficient Photoinduced Electron Transfer. ChemPhysChem, 2019, 20, 1054-1066.	2.1	19
15	Interaction of light with a non-covalent zinc porphyrin–graphene oxide nanohybrid. Physical Chemistry Chemical Physics, 2020, 22, 13456-13466.	2.8	19
16	Electron Transfer by Excited Benzoquinone Anions: Slow Rates for Two-Electron Transitions. Journal of Physical Chemistry A, 2013, 117, 8360-8367.	2.5	16
17	Solvent Effects on the Intramolecular Hydrogen-Atom Transfer between Tyrosine and Benzophenone. Diverting Reaction Mechanisms in Protic and Nonprotic Media. Journal of Physical Chemistry C, 2009, 113, 11695-11703.	3.1	13
18	Efficient Photochemical Oxidation of Anisole in Protic Solvents: Electron Transfer driven by Specific Solvent–Solute Interactions. ChemPhysChem, 2010, 11, 2108-2117.	2.1	13

Anna

#	Article	IF	CITATIONS
19	Role of Hydrogen Bonding in Photoinduced Electron–Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand. Journal of Physical Chemistry Letters, 2017, 8, 4043-4048.	4.6	12
20	Photoinduced CC oupling Reactions of Rigid Diastereomeric Benzophenoneâ€Methionine Dyads. Photochemistry and Photobiology, 2013, 89, 14-23.	2.5	11
21	3-Carboxybenzophenone (3-CB) as an efficient sensitizer in the photooxidation of methionyl-leucine in aqueous solutions: Spectral, kinetic and acid–base properties of 3-CB derived transients. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 287, 1-7.	3.9	11
22	Unusual photobehavior of benzophenone triplets in hexafluoroisopropanol. Inversion of the triplet character of benzophenone. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 244, 1-8.	3.9	9
23	Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production. Scientific Reports, 2021, 11, 15969.	3.3	9
24	Stereoselectivity of the Hydrogenâ€Atom Transfer in Benzophenone–Tyrosine Dyads: An Intramolecular Kinetic Solvent Effect. Chemistry - A European Journal, 2009, 15, 3061-3064.	3.3	8
25	Modification of eosin Y and cobalt molecular catalyst system with reduced graphene oxide for enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2020, 10, 4693-4702.	4.1	7
26	Chiral discrimination in the hydrogen-atom transfer between tyrosine and benzophenone in rigid peptides. Chemical Physics Letters, 2009, 473, 348-353.	2.6	6
27	Intramolecular H-atom transfer reactions in rigid peptides — Correlated solvent and structural effects. Canadian Journal of Chemistry, 2011, 89, 266-279.	1.1	4
28	Water-Triggered Photoinduced Electron Transfer in Acetonitrile–Water Binary Solvent. Solvent Microstructure-Tuned Reactivity of Hydrophobic Solutes. Journal of Physical Chemistry B, 2020, 124, 5654-5664.	2.6	3
29	Steric effects on intramolecular reactivity in cyclic dipeptides: Conformational analysis validated by a combined MD/DFT approach. Chemical Physics Letters, 2011, 512, 123-128.	2.6	1