List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8696512/publications.pdf Version: 2024-02-01

		41258	32761
105	12,168	49	100
papers	citations	h-index	g-index
117 all docs	117 docs citations	117 times ranked	10233 citing authors

#	Article	IF	CITATIONS
1	Discovery of novel fish papillomaviruses: From the Antarctic to the commercial fish market. Virology, 2022, 565, 65-72.	1.1	10
2	Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evolution, 2021, 7, veaa055.	2.2	28
3	Histone Modifications in Papillomavirus Virion Minichromosomes. MBio, 2021, 12, .	1.8	13
4	Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathogens, 2021, 17, e1009582.	2.1	17
5	Host-Pathogen Interactions in Human Polyomavirus 7‒Associated Pruritic Skin Eruption. Journal of Investigative Dermatology, 2021, 141, 1344-1348.e8.	0.3	7
6	A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	138
7	Treatment of Relapsing HPV Diseases by Restored Function of Natural Killer Cells. New England Journal of Medicine, 2021, 385, 921-929.	13.9	22
8	A novel lineage of polyomaviruses identified in bark scorpions. Virology, 2021, 563, 58-63.	1.1	9
9	Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evolution, 2021, 7, veaa100.	2.2	82
10	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	2.8	131
11	The case for BK polyomavirus as a cause of bladder cancer. Current Opinion in Virology, 2019, 39, 8-15.	2.6	27
12	Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biology, 2019, 20, 232.	3.8	173
13	Infectious Entry of Merkel Cell Polyomavirus. Journal of Virology, 2019, 93, .	1.5	34
14	Trichodysplasia spinulosa in a child: Identification of trichodysplasia spinulosaâ€associated polyomavirus in skin, serum, and urine. Pediatric Dermatology, 2019, 36, 723-724.	0.5	10
15	Merkel Cell Polyomavirus Infection and Detection. Journal of Visualized Experiments, 2019, , .	0.2	16
16	Development and evaluation of a BK polyomavirus serotyping assay using Luminex technology. Journal of Clinical Virology, 2019, 110, 22-28.	1.6	7
17	Plerixafor for the Treatment of WHIM Syndrome. New England Journal of Medicine, 2019, 380, 163-170.	13.9	74
18	Treatment for presumed BK polyomavirus nephropathy and risk of urinary tract cancers among kidney transplant recipients in the United States. American Journal of Transplantation, 2018, 18, 245-252.	2.6	39

#	Article	IF	CITATIONS
19	Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. MSphere, 2018, 3, .	1.3	75
20	Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. Cell Host and Microbe, 2018, 23, 628-635.e7.	5.1	63
21	Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. Journal of the American Academy of Dermatology, 2017, 76, 932-940.e3.	0.6	75
22	Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses. Cell Reports, 2017, 21, 1169-1179.	2.9	57
23	Complete Genome Sequence of a Polyomavirus Recovered from a Pomona Leaf-Nosed Bat (Hipposideros) Tj ETQ	q1 <u>1</u> 0.78	43]4 rgBT /O
24	Identification of a Second Raccoon-Associated Polyomavirus. Genome Announcements, 2017, 5, .	0.8	0
25	Genomic Sequence of Canine Papillomavirus 19. Genome Announcements, 2016, 4, .	0.8	21
26	The Ancient Evolutionary History of Polyomaviruses. PLoS Pathogens, 2016, 12, e1005574.	2.1	190
27	Exposing the Molecular Machinery of BK Polyomavirus. Structure, 2016, 24, 495.	1.6	3
28	Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host and Microbe, 2016, 19, 775-787.	5.1	133
29	The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication. Journal of Virology, 2016, 90, 1544-1556.	1.5	39
30	A Cell-Free Assembly System for Generating Infectious Human Papillomavirus 16 Capsids Implicates a Size Discrimination Mechanism for Preferential Viral Genome Packaging. Journal of Virology, 2016, 90, 1096-1107.	1.5	14
31	Expression of the small T antigen of Lymphotropic Papovavirus is sufficient to transform primary mouse embryo fibroblasts. Virology, 2016, 487, 112-120.	1.1	6
32	Genome Sequence of a Fish-Associated Polyomavirus, Black Sea Bass (Centropristis striata) Polyomavirus 1. Genome Announcements, 2015, 3, .	0.8	33
33	Hamburger polyomaviruses. Journal of General Virology, 2015, 96, 833-839.	1.3	36
34	Commercially Available Immunoglobulins Contain Virus Neutralizing Antibodies Against All Major Genotypes of Polyomavirus BK. American Journal of Transplantation, 2015, 15, 1014-1020.	2.6	50
35	Detection of Human Polyomavirus 7 in Human Thymic Epithelial Tumors. Journal of Thoracic Oncology, 2015, 10, 360-366.	0.5	44
36	JC polyomavirus mutants escape antibody-mediated neutralization. Science Translational Medicine, 2015, 7, 306ra151.	5.8	64

#	Article	IF	CITATIONS
37	WU Polyomavirus in Respiratory Epithelial Cells from Lung Transplant Patient with Job Syndrome. Emerging Infectious Diseases, 2015, 21, 103-106.	2.0	21
38	Human Polyomavirus 7-Associated Pruritic Rash and Viremia in Transplant Recipients. Journal of Infectious Diseases, 2015, 211, 1560-1565.	1.9	92
39	Maturation of the Human Papillomavirus 16 Capsid. MBio, 2014, 5, e01104-14.	1.8	64
40	Presence of Human Polyomavirus 6 in Mutation-Specific BRAF Inhibitor–Induced Epithelial Proliferations. JAMA Dermatology, 2014, 150, 1180.	2.0	51
41	Antibody to the gp120 V1/V2 Loops and CD4+ and CD8+ T Cell Responses in Protection from SIVmac251 Vaginal Acquisition and Persistent Viremia. Journal of Immunology, 2014, 193, 6172-6183.	0.4	34
42	Host DNA Damage Response Factors Localize to Merkel Cell Polyomavirus DNA Replication Sites To Support Efficient Viral DNA Replication. Journal of Virology, 2014, 88, 3285-3297.	1.5	44
43	The papillomavirus major capsid protein L1. Virology, 2013, 445, 169-174.	1.1	183
44	A Divergent Variant of the Eleventh Human Polyomavirus Species, Saint Louis Polyomavirus. Genome Announcements, 2013, 1, .	0.8	18
45	The Merkel Cell Polyomavirus Minor Capsid Protein. PLoS Pathogens, 2013, 9, e1003558.	2.1	83
46	BK Polyomavirus Genotypes Represent Distinct Serotypes with Distinct Entry Tropism. Journal of Virology, 2013, 87, 10105-10113.	1.5	86
47	Merkel Cell Polyomavirus Large T Antigen Disrupts Host Genomic Integrity and Inhibits Cellular Proliferation. Journal of Virology, 2013, 87, 9173-9188.	1.5	97
48	Characterization of Mus musculus Papillomavirus 1 Infection In Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization. Journal of Virology, 2013, 87, 13214-13225.	1.5	44
49	Structures of Merkel Cell Polyomavirus VP1 Complexes Define a Sialic Acid Binding Site Required for Infection. PLoS Pathogens, 2012, 8, e1002738.	2.1	79
50	Neutralization Serotyping of BK Polyomavirus Infection in Kidney Transplant Recipients. PLoS Pathogens, 2012, 8, e1002650.	2.1	83
51	No Evidence for Association of HPyV6 or HPyV7 with Different Skin Cancers. Journal of Investigative Dermatology, 2012, 132, 239-241.	0.3	22
52	Bromodomain Protein Brd4 Plays a Key Role in Merkel Cell Polyomavirus DNA Replication. PLoS Pathogens, 2012, 8, e1003021.	2.1	78
53	Targeting the Vaginal Mucosa with Human Papillomavirus Pseudovirion Vaccines Delivering Simian Immunodeficiency Virus DNA. Journal of Immunology, 2012, 188, 714-723.	0.4	30
54	Complete Genome Sequence of a Tenth Human Polyomavirus. Journal of Virology, 2012, 86, 10887-10887.	1.5	113

CHRISTOPHER B BUCK

#	Article	IF	CITATIONS
55	Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species. Virology, 2012, 433, 385-394.	1.1	37
56	Mucin Biopolymers As Broad-Spectrum Antiviral Agents. Biomacromolecules, 2012, 13, 1724-1732.	2.6	136
57	The Papillomavirus Virion: A Machine Built to Hide Molecular Achilles' Heels. Advances in Experimental Medicine and Biology, 2012, 726, 403-422.	0.8	35
58	Entry Tropism of BK and Merkel Cell Polyomaviruses in Cell Culture. PLoS ONE, 2012, 7, e42181.	1.1	63
59	Positive correlation between Merkel cell polyomavirus viral load and capsid-specific antibody titer. Medical Microbiology and Immunology, 2012, 201, 17-23.	2.6	43
60	Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. Journal of Clinical Investigation, 2012, 122, 4606-4620.	3.9	120
61	Cutaneous Squamous Cell Carcinoma: A Smoking Gun but Still No Suspects. Journal of Investigative Dermatology, 2011, 131, 1595-1596.	0.3	10
62	Taxonomical developments in the family Polyomaviridae. Archives of Virology, 2011, 156, 1627-1634.	0.9	171
63	Antibodies to Merkel Cell Polyomavirus Correlate to Presence of Viral DNA in the Skin. Journal of Infectious Diseases, 2011, 203, 1096-1100.	1.9	42
64	Immune Readouts May Have Prognostic Value for the Course of Merkel Cell Carcinoma, a Virally Associated Disease. Journal of Clinical Oncology, 2011, 29, 1506-1508.	0.8	13
65	Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry. PLoS Pathogens, 2011, 7, e1002161.	2.1	134
66	Characterization of monoclonal antibodies specific for the Merkel cell polyomavirus capsid. Virology, 2010, 405, 20-25.	1.1	19
67	Inhibition of gamma secretase blocks HPV infection. Virology, 2010, 407, 391-396.	1.1	34
68	Papillomavirus Infection Requires \hat{I}^3 Secretase. Journal of Virology, 2010, 84, 10661-10670.	1.5	49
69	Mucosal delivery of human papillomavirus pseudovirus-encapsidated plasmids improves the potency of DNA vaccination. Mucosal Immunology, 2010, 3, 475-486.	2.7	28
70	Merkel Cell Polyomavirus and Two Previously Unknown Polyomaviruses Are Chronically Shed from Human Skin. Cell Host and Microbe, 2010, 7, 509-515.	5.1	502
71	Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs. Vaccine, 2010, 28, 1583-1593.	1.7	22
72	Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus. PLoS Pathogens, 2009, 5, e1000578.	2.1	217

#	Article	IF	CITATIONS
73	Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. International Journal of Cancer, 2009, 125, 1250-1256.	2.3	297
74	Getting Stronger: The Relationship Between a Newly Identified Virus and Merkel Cell Carcinoma. Journal of Investigative Dermatology, 2009, 129, 9-11.	0.3	28
75	Adsorption of Human Papillomavirus 16 to Live Human Sperm. PLoS ONE, 2009, 4, e5847.	1.1	64
76	DNA from KI, WU and Merkel Cell Polyomaviruses Is Not Detected in Childhood Central Nervous System Tumours or Neuroblastomas. PLoS ONE, 2009, 4, e8239.	1.1	23
77	A novel polyherbal microbicide with inhibitory effect on bacterial, fungal and viral genital pathogens. International Journal of Antimicrobial Agents, 2008, 32, 180-185.	1.1	43
78	Defensins' Offensive Play: Exploiting a Viral Achilles' Heel. Cell Host and Microbe, 2008, 3, 3-4.	5.1	6
79	Arrangement of L2 within the Papillomavirus Capsid. Journal of Virology, 2008, 82, 5190-5197.	1.5	276
80	Abstract LE01:DISTINGUISHED LECTURE ON TARGETS FOR CANCER PREVENTION:Prevention of cervical cancer in current and future generations by HPV vaccination and other approaches. , 2008, , .		0
81	Production of Papillomavirusâ€Based Gene Transfer Vectors. Current Protocols in Cell Biology, 2007, 37, Unit 26.1.	2.3	149
82	A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2. Journal of Virology, 2007, 81, 13927-13931.	1.5	196
83	Neutralization of Human Papillomavirus with Monoclonal Antibodies Reveals Different Mechanisms of Inhibition. Journal of Virology, 2007, 81, 8784-8792.	1.5	116
84	Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nature Medicine, 2007, 13, 857-861.	15.2	466
85	Carrageenan Is a Potent Inhibitor of Papillomavirus Infection. PLoS Pathogens, 2006, 2, e69.	2.1	401
86	Human Â-defensins block papillomavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1516-1521.	3.3	245
87	Preclinical Model To Test Human Papillomavirus Virus (HPV) Capsid Vaccines In Vivo Using Infectious HPV/Cottontail Rabbit Papillomavirus Chimeric Papillomavirus Particles. Journal of Virology, 2006, 80, 12393-12397.	1.5	42
88	Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology, 2005, 337, 365-372.	1.1	158
89	Maturation of Papillomavirus Capsids. Journal of Virology, 2005, 79, 2839-2846.	1.5	259
90	Generation of HPV Pseudovirions Using Transfection and Their Use in Neutralization Assays. , 2005, 119, 445-462.		226

#	Article	IF	CITATIONS
91	An Evaluation of Enforced Rapid Proteasomal Degradation as a Means of Enhancing Vaccine-Induced CTL Responses. Journal of Immunology, 2004, 173, 3073-3083.	0.4	26
92	Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology, 2004, 321, 205-216.	1.1	325
93	HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology, 2004, 322, 182-189.	1.1	22
94	Efficient Intracellular Assembly of Papillomaviral Vectors. Journal of Virology, 2004, 78, 751-757.	1.5	436
95	Attenuated poxviruses generate clinically relevant frequencies of CMV-specific T cells. Blood, 2004, 104, 847-856.	0.6	42
96	Immunization with Th-CTL Fusion Peptide and Cytosine-Phosphate-Guanine DNA in Transgenic HLA-A2 Mice Induces Recognition of HIV-Infected T Cells and Clears Vaccinia Virus Challenge. Journal of Immunology, 2003, 171, 4028-4039.	0.4	27
97	Intrinsic Stability of Episomal Circles Formed during Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2002, 76, 4138-4144.	1.5	171
98	Direct Priming and Cross-Priming Contribute Differentially to the Induction of CD8+ CTL Following Exposure to Vaccinia Virus Via Different Routes. Journal of Immunology, 2002, 169, 4222-4229.	0.4	67
99	Molecular Characterization of Preintegration Latency in Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2002, 76, 8518-8531.	1.5	227
100	The Human Immunodeficiency Virus Type 1gag Gene Encodes an Internal Ribosome Entry Site. Journal of Virology, 2001, 75, 181-191.	1.5	145
101	Establishment of Latent HIV-1 Infection of Resting CD4+ T Lymphocytes Does Not Require Inactivation of Vpr. Virology, 2000, 278, 227-233.	1.1	8
102	Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1. Journal of Virology, 2000, 74, 7824-7833.	1.5	139
103	Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science, 1997, 278, 1295-1300.	6.0	2,842
104	APOBEC3B Signature Mutations Benefit BK Polyomavirus. SSRN Electronic Journal, 0, , .	0.4	0
105	Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses. SSRN Electronic Journal, 0, , .	0.4	0