
Theresa T Pizarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8695590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired On/Off Regulation of TNF Biosynthesis in Mice Lacking TNF AU-Rich Elements. Immunity, 1999, 10, 387-398.	6.6	1,251
2	The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in Immunology, 2015, 6, 639.	2.2	379
3	Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8017-8022.	3.3	373
4	Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 2013, 4, 280.	2.2	337
5	Probiotics promote gut health through stimulation of epithelial innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 454-459.	3.3	298
6	IL-1 family nomenclature. Nature Immunology, 2010, 11, 973-973.	7.0	294
7	Expression, Localization, and Functional Activity of TL1A, a Novel Th1-Polarizing Cytokine in Inflammatory Bowel Disease. Journal of Immunology, 2003, 171, 4868-4874.	0.4	272
8	Genetic Dissection of the Cellular Pathways and Signaling Mechanisms in Modeled Tumor Necrosis Factor–induced Crohn's-like Inflammatory Bowel Disease. Journal of Experimental Medicine, 2002, 196, 1563-1574.	4.2	256
9	TNF-αneutralization ameliorates the severity of murine Crohn's-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8366-8371.	3.3	182
10	The primary defect in experimental ileitis originates from a nonhematopoietic source. Journal of Experimental Medicine, 2006, 203, 541-552.	4.2	162
11	SAMP1/YitFc mouse strain: A spontaneous model of Crohn's disease-like ileitis. Inflammatory Bowel Diseases, 2011, 17, 2566-2584.	0.9	159
12	The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease–Like Ileitis. Inflammatory Bowel Diseases, 2018, 24, 1005-1020.	0.9	159
13	Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8441-8446.	3.3	157
14	Opposing Functions of Classic and Novel IL-1 Family Members in Gut Health and Disease. Frontiers in Immunology, 2013, 4, 181.	2.2	149
15	IL-33 activates tumor stroma to promote intestinal polyposis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2487-96.	3.3	141
16	RNA Binding Properties of the AU-rich Element-binding Recombinant Nup475/TIS11/Tristetraprolin Protein. Journal of Biological Chemistry, 2002, 277, 48558-48564.	1.6	116
17	IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9362-E9370.	3.3	110
18	Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nature Communications, 2020, 11, 900.	5.8	108

#	Article	IF	CITATIONS
19	Commentary: The role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe?. European Journal of Immunology, 2004, 34, 2347-2355.	1.6	101
20	In Vivo Inhibition of RIPK2 Kinase Alleviates Inflammatory Disease. Journal of Biological Chemistry, 2014, 289, 29651-29664.	1.6	98
21	Probiotic Bacteria Regulate Intestinal Epithelial Permeability in Experimental Ileitis by a TNF-Dependent Mechanism. PLoS ONE, 2012, 7, e42067.	1.1	97
22	New insights into the dichotomous role of innate cytokines in gut homeostasis and inflammation. Cytokine, 2012, 59, 451-459.	1.4	90
23	A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut, 2018, 67, 805-817.	6.1	88
24	CSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell, 2022, 185, 283-298.e17.	13.5	86
25	Cytokine Therapy for Crohn's Disease: Advances in Translational Research. Annual Review of Medicine, 2007, 58, 433-444.	5.0	77
26	Innate and adaptive immune responses related to IBD pathogenesis. Current Gastroenterology Reports, 2007, 9, 508-512.	1.1	77
27	Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis. Journal of Clinical Investigation, 2020, 130, 4218-4234.	3.9	76
28	Associations between Genetic Polymorphisms in IL-33, IL1R1 and Risk for Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e62144.	1.1	75
29	Commensal Bacteria Exacerbate Intestinal Inflammation but Are Not Essential for the Development of Murine lleitis. Journal of Immunology, 2007, 178, 1809-1818.	0.4	74
30	Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nature Communications, 2015, 6, 7577.	5.8	65
31	Identification of a quantitative trait locus for ileitis in a spontaneous mouse model of Crohn's disease: SAMP1/YitFc. Gastroenterology, 2003, 125, 477-490.	0.6	62
32	IL-33 Drives Eosinophil Infiltration and Pathogenic Type 2 Helper T-Cell Immune Responses Leading to Chronic Experimental Ileitis. American Journal of Pathology, 2016, 186, 885-898.	1.9	62
33	INDUCTION OF TNF $\hat{1}^{\pm}$ AND TNF $\hat{1}^{2}$ GENE EXPRESSION IN RAT CARDIAC TRANSPLANTS DURING ALLOGRAFT REJECTION. Transplantation, 1993, 56, 399-404.	0.5	60
34	Expanded B cell population blocks regulatory T cells and exacerbates ileitis in a murine model of Crohn disease. Journal of Clinical Investigation, 2004, 114, 389-398.	3.9	59
35	Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn's Disease–Like Ileitis: What is the Right Model?. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 19-32.	2.3	55
36	Novel Pharmacological Therapy in Inflammatory Bowel Diseases: Beyond Anti-Tumor Necrosis Factor. Frontiers in Pharmacology, 2019, 10, 671.	1.6	55

#	Article	IF	CITATIONS
37	Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 740-754.	8.2	53
38	Textile Masks and Surface Covers—A Spray Simulation Method and a "Universal Droplet Reduction Model―Against Respiratory Pandemics. Frontiers in Medicine, 2020, 7, 260.	1.2	52
39	Altered Epithelial Cell Lineage Allocation and Global Expansion of the Crypt Epithelial Stem Cell Population Are Associated with lleitis in SAMP1/YitFc Mice. American Journal of Pathology, 2005, 166, 1055-1067.	1.9	46
40	Challenges in IBD Research: Preclinical Human IBD Mechanisms. Inflammatory Bowel Diseases, 2019, 25, S5-S12.	0.9	44
41	Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17166-17176.	3.3	44
42	Novel cytokine signaling pathways in inflammatory bowel disease: insight into the dichotomous functions of IL-33 during chronic intestinal inflammation. Therapeutic Advances in Gastroenterology, 2011, 4, 311-323.	1.4	42
43	Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis. Current Opinion in Gastroenterology, 2014, 30, 531-538.	1.0	42
44	A Novel Role for TL1A/DR3 in Protection against Intestinal Injury and Infection. Journal of Immunology, 2016, 197, 377-386.	0.4	41
45	Neutralization of IL-1α ameliorates Crohn's disease-like ileitis by functional alterations of the gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26717-26726.	3.3	41
46	Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology, 2021, 160, 302-316.e7.	0.6	38
47	Parabacteroides distasonis induces depressive-like behavior in a mouse model of Crohn's disease. Brain, Behavior, and Immunity, 2021, 98, 245-250.	2.0	37
48	Mechanisms of Tight Junction Dysregulation in the SAMP1/YitFc Model of Crohn's Disease–like Ileitis. Annals of the New York Academy of Sciences, 2009, 1165, 301-307.	1.8	35
49	γδT Cells Coexpressing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. Journal of Immunology, 2017, 198, 908-915.	0.4	35
50	Cross-talk between type 3 innate lymphoid cells and the gut microbiota in inflammatory bowel disease. Current Opinion in Gastroenterology, 2015, 31, 449-455.	1.0	33
51	Intestinal-Specific TNFα Overexpression Induces Crohn's-Like Ileitis in Mice. PLoS ONE, 2013, 8, e72594.	1.1	32
52	Challenges in IBD Research. Inflammatory Bowel Diseases, 2013, 19, 677-682.	0.9	31
53	Estrogen Receptor α Loss-of-Function ProtectsÂFemale Mice FromÂDSS-Induced Experimental Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 630-633.e1.	2.3	31
54	Protective Role for TWEAK/Fn14 in Regulating Acute Intestinal Inflammation and Colitis-Associated Tumorigenesis. Cancer Research, 2016, 76, 6533-6542.	0.4	30

#	Article	IF	CITATIONS
55	Dysregulated NOD2 predisposes SAMP1/YitFc mice to chronic intestinal inflammation. Proceedings of the United States of America, 2013, 110, 16999-17004.	3.3	28
56	NOD2 drives early IL-33–dependent expansion of group 2 innate lymphoid cells during Crohn's disease–like ileitis. Journal of Clinical Investigation, 2021, 131, .	3.9	28
57	Pathway-based approaches to the treatment of inflammatory bowel disease. Translational Research, 2016, 167, 104-115.	2.2	26
58	Discovering the cause of inflammatory bowel disease: lessons from animal models. Current Opinion in Gastroenterology, 2000, 16, 310-317.	1.0	23
59	β7 Integrin Deficiency Suppresses B Cell Homing and Attenuates Chronic lleitis in SAMP1/YitFc Mice. Journal of Immunology, 2010, 185, 5561-5568.	0.4	23
60	lmmunosuppressive monocytes: possible homeostatic mechanism to restrain chronic intestinal inflammation. Journal of Leukocyte Biology, 2014, 96, 377-389.	1.5	21
61	Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2022, 28, 337-349.	0.9	20
62	Cloning IL-1 and the Birth of a New Era in Cytokine Biology. Journal of Immunology, 2007, 178, 5411-5412.	0.4	19
63	Epithelial-specific Toll-like Receptor (TLR)5 Activation Mediates Barrier Dysfunction in Experimental Ileitis. Inflammatory Bowel Diseases, 2017, 23, 392-403.	0.9	19
64	SAMP1/YitFc Mice Develop lleitis via Loss of CCL21 and Defects in Dendritic Cell Migration. Gastroenterology, 2015, 148, 783-793.e5.	0.6	17
65	The enigmatic roles of epithelial gasdermin B: Recent discoveries and controversies. Trends in Cell Biology, 2023, 33, 48-59.	3.6	17
66	Novel Insights Into the Interactions Between the Gut Microbiome, Inflammasomes, and Gasdermins During Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 806680.	1.8	16
67	Spontaneous, Immune-Mediated Gastric Inflammation in SAMP1/YitFc Mice, a Model of Crohn's-Like Gastritis. Gastroenterology, 2011, 141, 1709-1719.	0.6	15
68	Regulatory cell populations in the intestinal mucosa. Current Opinion in Gastroenterology, 2013, 29, 614-620.	1.0	14
69	Cytokine-Mediated Regulation of Innate Lymphoid Cell Plasticity in Gut Mucosal Immunity. Frontiers in Immunology, 2020, 11, 585319.	2.2	14
70	Death Receptor 3 Signaling Controls the Balance between Regulatory and Effector Lymphocytes in SAMP1/YitFc Mice with Crohn's Disease-Like lleitis. Frontiers in Immunology, 2018, 9, 362.	2.2	12
71	Candida tropicalis Infection Modulates the Gut Microbiome and Confers Enhanced Susceptibility to Colitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 901-923.	2.3	11
72	A novel model of colitis-associated cancer in SAMP1/YitFc mice with Crohn's disease-like ileitis. PLoS ONE, 2017, 12, e0174121.	1.1	10

#	Article	IF	CITATIONS
73	TWEAK/Fn14 Is Overexpressed in Crohn's Disease and Mediates Experimental lleitis by Regulating Critical Innate and Adaptive Immune Pathways. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 427-446.	2.3	9
74	Winnie-APCMin/+ Mice: A Spontaneous Model of Colitis-Associated Colorectal Cancer Combining Genetics and Inflammation. International Journal of Molecular Sciences, 2020, 21, 2972.	1.8	9
75	Dysregulated Intrahepatic CD4+ T-Cell Activation Drives Liver Inflammation in Ileitis-Prone SAMP1/YitFc Mice. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 406-419.	2.3	6
76	Cytokines and chemokines in inflammatory bowel disease. Current Opinion in Gastroenterology, 1995, 11, 305-309.	1.0	5
77	Death-Domain-Receptor 3 Deletion Normalizes Inflammatory Gene Expression and Prevents Ileitis in Experimental Crohn's Disease. Inflammatory Bowel Diseases, 2019, 25, 14-26.	0.9	5
78	Editorial: Cytokines and Intestinal Mucosal Immunity. Frontiers in Immunology, 2021, 12, 698693.	2.2	3
79	Live or let die: Translational insights and clinical perspectives of gasdermin Bâ€dependent intestinal epithelial cell fate. Clinical and Translational Medicine, 2022, 12, e787.	1.7	3
80	Reply. Gastroenterology, 2021, 160, 2630-2631.	0.6	1
81	Elucidating the Expression and Role of Epithelialâ€Derived Gasderminâ€B (GSDMB) in the Context of Chronic Intestinal Inflammation. FASEB Journal, 2019, 33, 496.28.	0.2	1
82	Inflammatory bowel diseases: Sex differences and beyond. , 2022, , 295-308.		1
83	Interleukin-37: A Peacekeeper at the Intestinal Borders. Digestive Diseases and Sciences, 2017, 62, 1103-1106.	1.1	0