Mark W Fear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8695374/publications.pdf

Version: 2024-02-01

59	1,271 citations	304368 22 h-index	414034 32 g-index
papers	Citations	II-IIIdex	g-maex
59 all docs	59 docs citations	59 times ranked	1254 citing authors

#	Article	IF	CITATIONS
1	Quality of life in paediatric burn patients with non-severe burns. Burns, 2023, 49, 220-232.	1.1	3
2	3D Bioprinting Constructs to Facilitate Skin Regeneration. Advanced Functional Materials, 2022, 32, 2105080.	7.8	35
3	A Methylome and Transcriptome Analysis of Normal Human Scar Cells Reveals a Role for FOXF2 in Scar Maintenance. Journal of Investigative Dermatology, 2022, 142, 1489-1498.e12.	0.3	4
4	Management of non-severe burn wounds in children and adolescents: optimising outcomes through all stages of the patient journey. The Lancet Child and Adolescent Health, 2022, 6, 269-278.	2.7	10
5	Non-severe burn injury increases cancer incidence in mice and has long-term impacts on the activation and function of T cells. Burns and Trauma, 2022, 10, tkac016.	2.3	3
6	The epigenetics of keloids. Experimental Dermatology, 2021, 30, 1099-1114.	1.4	17
7	Keloid fibroblasts have elevated and dysfunctional mechanotransduction signaling that is independent of TGF- \hat{l}^2 . Journal of Dermatological Science, 2021, 104, 11-20.	1.0	12
8	Secreted Factors from Keloid Keratinocytes Modulate Collagen Deposition by Fibroblasts from Normal and Fibrotic Tissue: A Pilot Study. Biomedicines, 2020, 8, 200.	1.4	6
9	Pediatric Burn Survivors Have Long-Term Immune Dysfunction With Diminished Vaccine Response. Frontiers in Immunology, 2020, 11, 1481.	2.2	13
10	A review of epigenetic regulation in wound healing: Implications for the future of wound care. Wound Repair and Regeneration, 2020, 28, 710-718.	1.5	16
11	Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars. Biomedicines, 2020, 8, 181.	1.4	11
12	Retrospective cohort study of health service use for cardiovascular disease among adults with and without a record of injury hospital admission. BMJ Open, 2020, 10, e039104.	0.8	0
13	Retrospective cohort study of health service use for cardiovascular disease among adults with and without a record of injury hospital admission. BMJ Open, 2020, 10, e039104.	0.8	O
14	Understanding acute burn injury as a chronic disease. Burns and Trauma, 2019, 7, 23.	2.3	86
15	Burn induced nervous system morbidity among burn and non-burn trauma patients compared with non-injured people. Burns, 2019, 45, 1041-1050.	1.1	8
16	Carbon dioxide laser treatment in burn-related scarring: A prospective randomised controlled trial. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72, 863-870.	0.5	33
17	Genetic influence on scar height and pliability after burn injury in individuals of European ancestry: A prospective cohort study. Burns, 2019, 45, 567-578.	1.1	5
18	Ephrin-A2 affects wound healing and scarring in a murine model of excisional injury. Burns, 2019, 45, 682-690.	1.1	4

#	Article	IF	Citations
19	IFN \hat{I}^2 inhibits the development of allergen tolerance and is conducive to the development of asthma on subsequent allergen exposure. Immunology and Cell Biology, 2018, 96, 841-851.	1.0	O
20	Diabetes mellitus after injury in burn and non-burned patients: A population based retrospective cohort study. Burns, 2018, 44, 566-572.	1.1	20
21	Up-regulation of $\hat{l}\pm 1$ -adrenoceptors in burn and keloid scars. Burns, 2018, 44, 582-588.	1.1	12
22	A retrospective cohort study to compare post-injury admissions for infectious diseases in burn patients, non-burnÂtrauma patients and uninjured people. Burns and Trauma, 2018, 6, 17.	2.3	5
23	Loss of Type A neuronal cells in the dorsal root ganglion after a non-severe full-thickness burn injury in a rodent model. Burns, 2018, 44, 1792-1800.	1.1	7
24	A population-based retrospective cohort study to assess the mental health of patients after a non-intentional burn compared with uninjured people. Burns, 2018, 44, 1417-1426.	1.1	17
25	From genetics to epigenetics: new insights into keloid scarring. Cell Proliferation, 2017, 50, .	2.4	64
26	Identification of factors predicting scar outcome after burn in adults: A prospective case–control study. Burns, 2017, 43, 1271-1283.	1.1	44
27	Effects of Pediatric Burns on Gastrointestinal Diseases. Journal of Burn Care and Research, 2017, 38, 125-133.	0.2	10
28	Fracture admissions after burns: A retrospective longitudinal study. Burns, 2017, 43, 1175-1182.	1.1	2
29	Burns and long-term infectious disease morbidity: A population-based study. Burns, 2017, 43, 273-281.	1.1	32
30	Long term cardiovascular impacts after burn and non-burn trauma: A comparative population-based study. Burns, 2017, 43, 1662-1672.	1.1	28
31	Burn leads to long-term elevated admissions to hospital for gastrointestinal disease in a West Australian population based study. Burns, 2017, 43, 665-673.	1.1	13
32	Burn Injury Leads to Increased Long-Term Susceptibility to Respiratory Infection in both Mouse Models and Population Studies. PLoS ONE, 2017, 12, e0169302.	1.1	24
33	Identification of factors predicting scar outcome after burn injury in children: a prospective case-control study. Burns and Trauma, 2017, 5, 19.	2.3	30
34	Burn injury and long-term nervous system morbidity: a population-based cohort study. BMJ Open, 2016, 6, e012668.	0.8	19
35	The impact of non-severe burn injury on cardiac function and long-term cardiovascular pathology. Scientific Reports, 2016, 6, 34650.	1.6	29
36	Respiratory Morbidity After Childhood Burns: A 10-Year Follow-up Study. Pediatrics, 2016, 138, .	1.0	12

#	Article	IF	Citations
37	The role of Eph receptors and Ephrins in the skin. International Journal of Dermatology, 2016, 55, 3-10.	0.5	10
38	Increased admissions for diabetes mellitus after burn. Burns, 2016, 42, 1734-1739.	1.1	34
39	Timing of excision after a non-severe burn has a significant impact on the subsequent immune response in a murine model. Burns, 2016, 42, 815-824.	1.1	18
40	Functional Reactive Polymer Electrospun Matrix. ACS Applied Materials & Interfaces, 2016, 8, 4934-4939.	4.0	24
41	Understanding the long-term impacts of burn on the cardiovascular system. Burns, 2016, 42, 366-374.	1.1	74
42	Long-term musculoskeletal morbidity after adult burn injury: a population-based cohort study. BMJ Open, 2015, 5, e009395.	0.8	39
43	Cells from the hematopoietic lineage are only present transiently during healing in a mouse model of non-severe burn injury. Stem Cell Research and Therapy, 2015, 6, 134.	2.4	5
44	Increased admissions for musculoskeletal diseases after burns sustained during childhood and adolescence. Burns, 2015, 41, 1674-1682.	1.1	13
45	Up-regulation of cutaneous α1-adrenoceptors after a burn. Burns, 2015, 41, 1227-1234.	1.1	14
46	Non-severe burn injury leads to depletion of bone volume that can be ameliorated by inhibiting TNF- $\hat{l}\pm$. Burns, 2015, 41, 558-564.	1.1	22
47	The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision. Journal of Investigative Dermatology, 2015, 135, 2119-2128.	0.3	71
48	Long-term Effects of Pediatric Burns on the Circulatory System. Pediatrics, 2015, 136, e1323-e1330.	1.0	40
49	Ephrin-A2 and Ephrin-A5 Are Important for the Functional Development of Cutaneous Innervation in a Mouse Model. Journal of Investigative Dermatology, 2015, 135, 632-635.	0.3	3
50	Burn injury, gender and cancer risk: population-based cohort study using data from Scotland and Western Australia. BMJ Open, 2014, 4, e003845.	0.8	31
51	Evaluating the effects of nacre on human skin and scar cells in culture. Toxicology Research, 2014, 3, 223-227.	0.9	10
52	Burn injury has a systemic effect on reinnervation of skin and restoration of nociceptive function. Wound Repair and Regeneration, 2012, 20, 367-377.	1.5	18
53	Changes in cutaneous innervation in patients with chronic pain after burns. Burns, 2011, 37, 631-637.	1.1	44
54	Systemic Decreases in Cutaneous Innervation after Burn Injury. Journal of Investigative Dermatology, 2010, 130, 1948-1951.	0.3	35

#	Article	IF	CITATIONS
55	Bone marrow-derived cells in the healing burn woundâ€"More than just inflammation. Burns, 2009, 35, 356-364.	1.1	55
56	A peptide inhibitor of câ€Jun promotes wound healing in a mouse fullâ€thickness burn model. Wound Repair and Regeneration, 2008, 16, 58-64.	1.5	22
57	Exogenous metallothioneinâ€IA promotes accelerated healing after a burn wound. Wound Repair and Regeneration, 2008, 16, 682-690.	1.5	29
58	Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis. Biochemical and Biophysical Research Communications, 2008, 377, 606-611.	1.0	25
59	Sampling the skin surface chemistry for diagnosis and prognosis. Wound Repair and Regeneration, 0, , .	1.5	1