Zhaoquan Zeng

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8695229/publications.pdf
Version: 2024-02-01

Direct correlation and strong reduction of native point defects and microwave dielectric loss in
air-annealed (Ba,Sr)TiO3. Applied Physics Letters, 2015, 106, .

Optical identification of oxygen vacancy formation at
$2 \mathrm{SrTiO}<$ sub> $3</$ sub>â€" $(\mathrm{Ba}, \mathrm{Sr}) \mathrm{TiO}\langle\mathrm{sub}\rangle 3</$ sub>heterostructures. Journal Physics D: Applied Physics, 2014, 47, 255303.

Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy. Journal of Materials Science: Materials in Electronics, 2013, 24, 1635-1639.

MBE grown $\mathrm{GaAsBi} / \mathrm{GaAs}$ double quantum well separate confinement heterostructures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .
0.6

Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy
5 growth chamber and an x-ray photoemission spectroscopy analysis system. Review of Scientific
$0.6 \quad 5$ Instruments, 2013, 84, 065105.

Molecular beam epitaxial growth of Bi 2 Te 3 and Sb 2 Te 3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction. AIP Advances, 2013, 3, .
$0.6 \quad 66$

Heterojunction band offsets and dipole formation at BaTiO3/SrTiO3 interfaces. Journal of Applied
Physics, 2013, 114, .
$1.1 \quad 29$

8 Molecular beam epitaxy growth of $\mathrm{GaAsBi} / \mathrm{GaAs} / \mathrm{AlGaAs}$ separate confinement heterostructures.
Applied Physics Letters, 2012, 101, .

Ordered SrTiO3 Nanoripples Induced by Focused Ion Beam. Nano-Micro Letters, 2012, 4, 243-246.

Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy. Applied Physics Letters, 2011,
1.5

13

Fabrication and characterization of high quality $\mathrm{n}-\mathrm{ZnO} / \mathrm{p}-\mathrm{GaN}$ heterojunction light emission diodes.
Fabrication and characterization of hig
Thin Solid Films, 2011, 520, 445-447.
0.8

17

Formation of GaAs Double Rings Through Gallium Migration and Nanodrilling. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 58-61.

Metastable rocksalt ZnO interfacial layer and its influence on polarity selection of Zn -polar ZnO
films. Journal of Crystal Growth, 2010, 312, 263-266.

Controlled growth of Zn -polar ZnO film on $\mathrm{MgAl} 2 \mathrm{O} 4(1 \mathrm{a} € \%$ lâ€ $\%$ 1) substrate using MgO buffer layer. Journal
Physics D: Applied Physics, 2010, 43, 085301.

Formation of metastable MgO structures on type-III oxide surfaces: Effect of periodic out-of-plane electric dipole moment of substrates. Journal of Crystal Growth, 2009, 311, 425-428.

Surfactant effects of lithium dopant during molecular beam epitaxy of ZnO films. Journal of Physics
Condensed Matter, 2007, 19, 482001.
0.7

8

Surface modification of MgAl 2 O 4 (111) for growth of high-quality ZnO epitaxial films. Applied Physics
Letters, 2007, 90, 081911.

Low-temperature interface engineering for high-quality ZnO epitaxy on $\mathrm{Si}(111)$ substrate. Applied
Physics Letters, 2007, 90, 151912.

Microstructure and polarity of epitaxial ZnO films grown on LSAT(111) substrate studied by
22 transmission electron microscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 339, 497-502.

23	Interface engineering for lattice-matched epitaxy of ZnO on (La,Sr)(Al, Ta)O3(111) substrate. Applied Physics Letters, 2005, 87, 202107.	1.5	20
24	SOME THEORETICAL ISSUES OF HADRON PRODUCTIONS AND PROPERTIES FROM J/î DECAYS. International Journal of Modern Physics A, 2005, 20, 1712-1719.	0.5	0
25	Controlled growth of Zn -polar ZnO epitaxial film by nitridation of sapphire substrate. Applied Physics Letters, 2005, 86, 112111.	1.5	56
26	Cubic nitridation layers on sapphire substrate and their role in polarity selection of ZnO films. Applied Physics Letters, 2005, 87, 051901.	1.5	41
27	Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate. Journal of Applied Physics, 2004, 96, 7108-7111.	1.1	39
28	Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface. Applied Physics Letters, 2004, 85, 4385.	1.5	33
29	Role of gallium wetting layer in high-quality ZnO growth on sapphire (0001) substrates. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 612.	0.2	1
30	Defect characteristics of ZnO film grown on sapphire with an ultrathin gallium wetting layer. Journal of Crystal Growth, 2004, 273, 100-105.	0.7	11
31	Determination of the polarity of ZnO thin films by electron energy-loss spectroscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 320, 322-326.	0.9	24

