Zhaoquan Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8695229/publications.pdf Version: 2024-02-01

471477 552766 32 650 17 26 citations h-index g-index papers 32 32 32 981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO3. Applied Physics Letters, 2015, 106, .	3.3	3
2	Optical identification of oxygen vacancy formation at SrTiO ₃ –(Ba,Sr)TiO ₃ heterostructures. Journal Physics D: Applied Physics, 2014, 47, 255303.	2.8	22
3	Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy. Journal of Materials Science: Materials in Electronics, 2013, 24, 1635-1639.	2.2	17
4	MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	20
5	Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system. Review of Scientific Instruments, 2013, 84, 065105.	1.3	5
6	Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction. AIP Advances, 2013, 3, .	1.3	66
7	Heterojunction band offsets and dipole formation at BaTiO3/SrTiO3 interfaces. Journal of Applied Physics, 2013, 114, .	2.5	29
8	Molecular beam epitaxy growth of GaAsBi/GaAs/AlGaAs separate confinement heterostructures. Applied Physics Letters, 2012, 101, .	3.3	21
9	Ordered SrTiO3 Nanoripples Induced by Focused Ion Beam. Nano-Micro Letters, 2012, 4, 243-246.	27.0	3
10	Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy. Applied Physics Letters, 2011, 99, .	3.3	13
11	Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes. Thin Solid Films, 2011, 520, 445-447.	1.8	17
12	Formation of GaAs Double Rings Through Gallium Migration and Nanodrilling. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 58-61.	0.5	5
13	Metastable rocksalt ZnO interfacial layer and its influence on polarity selection of Zn-polar ZnO films. Journal of Crystal Growth, 2010, 312, 263-266.	1.5	7
14	Controlled growth of Zn-polar ZnO film on MgAl2O4(1 1 1) substrate using MgO buffer layer. Journal Physics D: Applied Physics, 2010, 43, 085301.	2.8	1
15	Formation of metastable MgO structures on type-III oxide surfaces: Effect of periodic out-of-plane electric dipole moment of substrates. Journal of Crystal Growth, 2009, 311, 425-428.	1.5	9
16	Surfactant effects of lithium dopant during molecular beam epitaxy of ZnO films. Journal of Physics Condensed Matter, 2007, 19, 482001.	1.8	8
17	Surface modification of MgAl2O4 (111) for growth of high-quality ZnO epitaxial films. Applied Physics Letters, 2007, 90, 081911.	3.3	24
18	Low-temperature interface engineering for high-quality ZnO epitaxy on Si(111) substrate. Applied Physics Letters, 2007, 90, 151912.	3.3	46

ZHAOQUAN ZENG

#	Article	IF	CITATIONS
19	Inversion domain boundary in a ZnO film. Philosophical Magazine Letters, 2007, 87, 687-693.	1.2	13
20	Tri-Buffer Process: A New Approach to Obtain High-Quality ZnO Epitaxial Films on Sapphire Substrates. Journal of Electronic Materials, 2007, 36, 452-456.	2.2	3
21	Growth of In2O3 single-crystalline film on sapphire (0001) substrate by molecular beam epitaxy. Journal of Crystal Growth, 2006, 289, 686-689.	1.5	53
22	Microstructure and polarity of epitaxial ZnO films grown on LSAT(111) substrate studied by transmission electron microscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 339, 497-502.	2.1	8
23	Interface engineering for lattice-matched epitaxy of ZnO on (La,Sr)(Al,Ta)O3(111) substrate. Applied Physics Letters, 2005, 87, 202107.	3.3	20
24	SOME THEORETICAL ISSUES OF HADRON PRODUCTIONS AND PROPERTIES FROM J/Ĩ^ DECAYS. International Journal of Modern Physics A, 2005, 20, 1712-1719.	1.5	0
25	Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate. Applied Physics Letters, 2005, 86, 112111.	3.3	56
26	Cubic nitridation layers on sapphire substrate and their role in polarity selection of ZnO films. Applied Physics Letters, 2005, 87, 051901.	3.3	41
27	Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate. Journal of Applied Physics, 2004, 96, 7108-7111.	2.5	39
28	Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface. Applied Physics Letters, 2004, 85, 4385.	3.3	33
29	Role of gallium wetting layer in high-quality ZnO growth on sapphire (0001) substrates. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 612.	0.2	1
30	Defect characteristics of ZnO film grown on sapphire with an ultrathin gallium wetting layer. Journal of Crystal Growth, 2004, 273, 100-105.	1.5	11
31	Determination of the polarity of ZnO thin films by electron energy-loss spectroscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 320, 322-326.	2.1	24
32	Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films. Journal Physics D: Applied Physics, 2004, 37, 3058-3062.	2.8	32