
Nicole Endlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/869490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Podocytes Respond to Mechanical Stress In Vitro. Journal of the American Society of Nephrology: JASN, 2001, 12, 413-422.	3.0	252
2	Podocytes are sensitive to fluid shear stress in vitro. American Journal of Physiology - Renal Physiology, 2006, 291, F856-F865.	1.3	115
3	Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB Journal, 2002, 16, 1-24.	0.2	78
4	The Challenge and Response of Podocytes to Glomerular Hypertension. Seminars in Nephrology, 2012, 32, 327-341.	0.6	73
5	Stretch, tension and adhesion – Adaptive mechanisms of the actin cytoskeleton in podocytes. European Journal of Cell Biology, 2006, 85, 229-234.	1.6	64
6	Structured illumination microscopy and automatized image processing as a rapid diagnostic tool for podocyte effacement. Scientific Reports, 2017, 7, 11473.	1.6	62
7	Stressed podocytes—mechanical forces, sensors, signaling and response. Pflugers Archiv European Journal of Physiology, 2017, 469, 937-949.	1.3	62
8	Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. Cytoskeleton, 2007, 64, 966-976.	4.4	53
9	Non-muscle myosin IIA is required for the development of the zebrafish glomerulus. Kidney International, 2011, 80, 1055-1063.	2.6	50
10	Palladin is a dynamic actin-associated protein in podocytes. Kidney International, 2009, 75, 214-226.	2.6	47
11	Two-Photon Microscopy Reveals Stationary Podocytes in Living Zebrafish Larvae. Journal of the American Society of Nephrology: JASN, 2014, 25, 681-686.	3.0	45
12	Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin II–mediated podocyte apoptosis. Kidney International, 2011, 80, 959-969.	2.6	37
13	ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier. Developmental Cell, 2018, 47, 741-757.e8.	3.1	33
14	cAMP pathway in podocytes. Microscopy Research and Technique, 2002, 57, 228-231.	1.2	30
15	The transcription factor Dach1 is essential for podocyte function. Journal of Cellular and Molecular Medicine, 2018, 22, 2656-2669.	1.6	28
16	The Role of Palladin in Podocytes. Journal of the American Society of Nephrology: JASN, 2018, 29, 1662-1678.	3.0	26
17	Comparative Analysis of Podocyte Foot Process Morphology in Three Species by 3D Super-Resolution Microscopy. Frontiers in Medicine, 2018, 5, 292.	1.2	26
18	Acute podocyte injury is not a stimulus for podocytes to migrate along the glomerular basement membrane in zebrafish larvae. Scientific Reports, 2017, 7, 43655.	1.6	23

NICOLE ENDLICH

#	Article	IF	CITATIONS
19	Fibronectin is upâ€regulated in podocytes by mechanical stress. FASEB Journal, 2019, 33, 14450-14460.	0.2	22
20	A novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes. British Journal of Pharmacology, 2017, 174, 163-176.	2.7	21
21	Studying the role of fascin-1 in mechanically stressed podocytes. Scientific Reports, 2017, 7, 9916.	1.6	20
22	OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. American Journal of Physiology - Renal Physiology, 2013, 304, F1458-F1470.	1.3	18
23	SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. Journal of the American Society of Nephrology: JASN, 2021, 32, 563-579.	3.0	18
24	FocusHeuristics – expression-data-driven network optimization and disease gene prediction. Scientific Reports, 2017, 7, 42638.	1.6	17
25	The Actin-Binding Protein $\hat{l}\pm$ -Adducin Modulates Desmosomal Turnover and Plasticity. Journal of Investigative Dermatology, 2021, 141, 1219-1229.e11.	0.3	16
26	Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development (Cambridge), 2022, 149, .	1.2	16
27	α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2022, 33, 786-808.	3.0	15
28	Prolonged podocyte depletion in larval zebrafish resembles mammalian focal and segmental glomerulosclerosis. FASEB Journal, 2020, 34, 15961-15974.	0.2	12
29	The role of filamins in mechanically stressed podocytes. FASEB Journal, 2021, 35, e21560.	0.2	9
30	The calcium-sensing receptor stabilizes podocyte function in proteinuric humans and mice. Kidney International, 2022, 101, 1186-1199.	2.6	6
31	High salt dietâ€induced proximal tubular phenotypic changes and sodiumâ€glucose cotransporterâ€2 expression are coordinated by cold shock Yâ€box binding proteinâ€1. FASEB Journal, 2021, 35, e21912.	0.2	4
32	Adriamycin does not damage podocytes of zebrafish larvae. PLoS ONE, 2020, 15, e0242436.	1.1	4
33	The podocyte-specific knockout of palladin in mice with a 129 genetic background affects podocyte morphology and the expression of palladin interacting proteins. PLoS ONE, 2021, 16, e0260878.	1.1	1