
Jing Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8694858/publications.pdf

Version: 2024-02-01

LINC THENC

#	Article	IF	CITATIONS
1	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	15.6	964
2	Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. CheM, 2018, 4, 174-185.	5.8	682
3	Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy and Environmental Science, 2019, 12, 615-623.	15.6	358
4	Highâ€Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1803774.	10.2	227
5	Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Letters, 2020, 12, 102.	14.4	218
6	Carbon fibers embedded with FellI-MOF-5-derived composites for enhanced microwave absorption. Carbon, 2021, 174, 509-517.	5.4	177
7	An Organic Anode for High Temperature Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1802986.	10.2	151
8	Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 24267-24283.	5.2	145
9	Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. Nano Energy, 2018, 50, 431-440.	8.2	134
10	Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. Journal of Materials Science and Technology, 2021, 67, 265-272.	5.6	134
11	A Novel Strategy in Electromagnetic Wave Absorbing and Shielding Materials Design: Multiâ€Responsive Field Effect. Small Science, 2022, 2, 2100077.	5.8	126
12	Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites. Journal of Alloys and Compounds, 2014, 589, 174-181.	2.8	123
13	Optimal Configuration of Nâ€Đoped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 11999-12006.	7.2	121
14	Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe ₂ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 36182-36189.	4.0	99
15	Hydrogenated Anatase TiO ₂ as Lithium-Ion Battery Anode: Size–Reactivity Correlation. ACS Applied Materials & Interfaces, 2016, 8, 20074-20081.	4.0	61
16	Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23431-23438.	4.0	58
17	Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers. Journal of Materials Science and Technology, 2021, 94, 239-246.	5.6	45
18	Reduction synthesis of FexOy@SiO2 core–shell nanostructure with enhanced microwave-absorption properties. Journal of Alloys and Compounds, 2014, 602, 8-15.	2.8	43

Jing Zheng

#	Article	IF	CITATIONS
19	Facile Aluminum Reduction Synthesis of Blue TiO ₂ with Oxygen Deficiency for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 18309-18315.	1.7	32
20	Excellent lightweight carbon-based microwave absorbers derived from metal–organic frameworks with tunable electromagnetic properties. Inorganic Chemistry Frontiers, 2020, 7, 1667-1675.	3.0	28
21	The origin of the two-plateaued or one-plateaued open circuit voltage in Li–S batteries. Nano Energy, 2020, 75, 104915.	8.2	28
22	Modulating dielectric loss of mesoporous carbon fibers with radar cross section reduction performance <i>via</i> computer simulation technology. Inorganic Chemistry Frontiers, 2021, 8, 758-765.	3.0	27
23	Atomicâ€6cale Dispersed Feâ€Based Catalysts Confined on Nitrogenâ€Doped Graphene for Liâ€6 Batteries: Polysulfides with Enhanced Conversion Efficiency. Chemistry - A European Journal, 2020, 26, 10314-10320.	1.7	24
24	Optimal Configuration of Nâ€Đoped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2020, 132, 12097-12104.	1.6	21
25	Photocatalytic conversion of CO2 into value-added hydrocarbon (methanol) with high selectivity over ZnS nanoparticles driven by 355-nm pulsed laser. Research on Chemical Intermediates, 2015, 41, 739-747.	1.3	18
26	Balance of N-Doping Engineering and Carbon Chemistry to Expose Edge Graphitic N Sites for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 61129-61138.	4.0	14
27	The enhanced microwave broadband absorbing ability of carbon microspheres via electromagnetic simulating honeycomb design. Journal of Materials Science: Materials in Electronics, 2021, 32, 25809-25819.	1.1	8
28	Enhanced microwave absorption properties of flake-shaped FeCo/BaFe12O19 composites. Ceramics International, 2021, 47, 12389-12396.	2.3	8
29	Edge reconfiguration of N, P-codoped carbon boosts oxygen reduction electrocatalysis. Journal of Materials Science, 2021, 56, 19577-19588.	1.7	6
30	Inâ€situ activation/dedoping induced defective carbon sponge for enhanced oxygen reduction electrocatalysis. ChemElectroChem, 2021, 8, 4781.	1.7	2