
Nimet Bolgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8694718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 1099-1104.	1.7	310
2	In vitro and in vivo degradation of non-woven materials made of poly(Îμ-caprolactone) nanofibers prepared by electrospinning under different conditions. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1537-1555.	1.9	265
3	<i>In vivo</i> performance of simvastatinâ€loaded electrospun spiralâ€wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. Journal of Biomedical Materials Research - Part A, 2009, 90A, 1137-1151.	2.1	102
4	Three-Dimensional Ingrowth of Bone Cells Within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes. Tissue Engineering - Part A, 2008, 14, 1743-1750.	1.6	80
5	Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, <i>in vitro</i> and <i>in vivo</i> biocompatibility. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 20-33.	1.3	60
6	Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1165-1179.	1.9	56
7	Electrospun matrices made of poly(α-hydroxy acids) for medical use. Nanomedicine, 2007, 2, 441-457.	1.7	54
8	Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. International Journal of Biological Macromolecules, 2020, 161, 1581-1590.	3.6	43
9	SAXS Investigation of the Effect of Temperature on the Multiscale Structure of a Macroporous Poly(<i>N</i> -isopropylacrylamide) Gel. Macromolecules, 2010, 43, 2009-2017.	2.2	42
10	Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: An animal model. Journal of Biomedical Materials Research - Part A, 2009, 91A, 60-68.	2.1	38
11	Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polymer Bulletin, 2021, 78, 2211-2226.	1.7	38
12	Magnetic nanoparticle-loaded electrospun poly(Îμ-caprolactone) nanofibers for drug delivery applications. Applied Nanoscience (Switzerland), 2018, 8, 1461-1469.	1.6	34
13	3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 770-779.	1.3	33
14	Effect of crosslinking methods on the structure and biocompatibility of polyvinyl alcohol/gelatin cryogels. Bio-Medical Materials and Engineering, 2016, 27, 327-340.	0.4	31
15	Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 70-77.	1.9	27
16	Synthesis and characterization of injectable chitosan cryogel microsphere scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 686-696.	1.8	24
17	Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016, 3, .	0.4	21
18	Imaging the Structure of Macroporous Hydrogels by Two-Photon Fluorescence Microscopy. Macromolecules, 2009, 42, 2749-2755.	2.2	17

NIMET BOLGEN

#	Article	IF	CITATIONS
19	Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. Journal of Applied Polymer Science, 2021, 138, 50337.	1.3	17
20	Novel 3D electrospun polyamide scaffolds prepared by 3D printed collectors and their interaction with chondrocytes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 143-150.	1.8	14
21	Thermoresponsive biodegradable HEMA–Lactate–Dextran-co-NIPA cryogels for controlled release of simvastatin. Artificial Cells, Nanomedicine and Biotechnology, 2015, 43, 40-49.	1.9	13
22	Comparison of additive effects on the PVA/starch cryogels: Synthesis, characterization, cytotoxicity, and genotoxicity studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 855-864.	1.8	13
23	Dual stimuli-responsive chitosan grafted poly(NIPAM-co-AAc)/poly(vinyl alcohol) hydrogels for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 810-819.	1.8	11
24	Differential anti-inflammatory properties of chitosan-based cryogel scaffolds depending on chitosan/gelatin ratio. Artificial Cells, Nanomedicine and Biotechnology, 2021, 49, 682-690.	1.9	11
25	Chitosan cryogel microspheres decorated with silver nanoparticles as injectable and antimicrobial scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 919-927.	1.8	10
26	A novel strategy for cartilage tissue engineering: Collagenase-loaded cryogel scaffolds in a sheep model. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 313-321.	1.8	9
27	Stem cells combined 3D electrospun nanofibrous and macrochannelled matrices: a preliminary approach in repair of rat cranial bones. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1094-1100.	1.9	9
28	Fabrication of basalt embedded composite fiber membrane using electrospinning method and response surface methodology. Journal of Applied Polymer Science, 2021, 138, 50599.	1.3	9
29	Novel styrax liquidus loaded chitosan/polyvinyl alcohol cryogels with antioxidant and antimicrobial properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	9
30	Biodegradable polymeric micelles for drug delivery applications. , 2018, , 635-651.		7
31	Electrospun Composite Nanofibers Based on Poly (ε-Caprolactone) and Styrax Liquidus (Liquidambar) Tj ETQq Cytocompatibility Results. Journal of Polymers and the Environment, 2022, 30, 2462-2473.	1 1 0.7843 2.4	14 rgBT /Ove 7
32	Injectable chitosan cryogel microspheres with biocompatible properties on mammalian macrophages in vitro. Journal of Materials Science, 2021, 56, 17268-17277.	1.7	6
33	Electrospinning of Gelatin Nanofibers: Effect of gelatin concentration on chemical, morphological and degradation characteristics. Turkish Journal of Engineering, 2021, 5, 171-176.	0.7	6
34	Introduction and Fundamentals of Electrospinning. , 2022, , 3-34.		4
35	Green synthesized silver nanoparticles loaded PVA/Starch cryogel scaffolds with antibacterial properties. TehniÄki Glasnik, 2019, 13, 1-6.	0.4	3
36	Synthesis of silver nanoflakes on chitosan hydrogel beads and their antimicrobial potential. International Journal of Polymer Analysis and Characterization, 2020, 25, 421-430.	0.9	2

NIMET BOLGEN

#	Article	IF	CITATIONS
37	Macroporous Cryogels for Water Purification. Advanced Sciences and Technologies for Security Applications, 2021, , 275-290.	0.4	2
38	Assessment of <scp>chitosan:gum</scp> tragacanth cryogels for tissue engineering applications. Polymer International, 2022, 71, 1109-1118.	1.6	2
39	Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. Journal of Biomaterials Applications, 2022, 36, 1335-1345.	1.2	2
40	Nanocomposites of Electrospun Polymeric Materials As Protective Textiles Against Chemical and Biological Hazards. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 253-258.	0.2	1
41	Tailoring the spatial filament organization within nanofibrous tissue engineering scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 24-33.	1.8	1
42	Three-Dimensional Ingrowth of Bone Cells within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes. Tissue Engineering - Part A, 0, , 110306231138043.	1.6	1
43	Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 275-289.	0.2	1
44	Cover Image, Volume 138, Issue 14. Journal of Applied Polymer Science, 2021, 138, 50437.	1.3	0
45	Electrospun Nanomaterials: Applications in Water Contamination Remediation. Advanced Sciences and Technologies for Security Applications, 2021, , 197-213.	0.4	0