Marcin MasÅ,owski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8694130/publications.pdf Version: 2024-02-01

MARCIN MASA OWSKI

#	Article	IF	CITATIONS
1	Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polymer Testing, 2018, 69, 225-237.	2.3	65
2	Linseed oil as a natural modifier of rigid polyurethane foams. Industrial Crops and Products, 2018, 115, 40-51.	2.5	60
3	Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillers. Polymers, 2019, 11, 972.	2.0	60
4	Natural rubber biocomposites containing corn, barley and wheat straw. Polymer Testing, 2017, 63, 84-91.	2.3	45
5	Natural Rubber Composites Filled with Cereals Straw Modified with Acetic and Maleic Anhydride: Preparation and Properties. Journal of Polymers and the Environment, 2018, 26, 4141-4157.	2.4	29
6	Properties of Chemically Modified (Selected Silanes) Lignocellulosic Filler and Its Application in Natural Rubber Biocomposites. Materials, 2020, 13, 4163.	1.3	28
7	The potential application of cereal straw as a bio-filler for elastomer composites. Polymer Bulletin, 2020, 77, 2021-2038.	1.7	27
8	Influence of Lignocellulose Fillers on Properties Natural Rubber Composites. Journal of Polymers and the Environment, 2018, 26, 2489-2501.	2.4	24
9	The use of rye, oat and triticale straw as fillers of natural rubber composites. Polymer Bulletin, 2018, 75, 4607-4626.	1.7	22
10	Silanized cereal straw as a novel, functional filler of natural rubber biocomposites. Cellulose, 2019, 26, 1025-1040.	2.4	21
11	Thermoplastic Elastomer Biocomposites Filled with Cereal Straw Fibers Obtained with Different Processing Methods—Preparation and Properties. Polymers, 2019, 11, 641.	2.0	18
12	Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocomposites. Materials, 2020, 13, 2526.	1.3	18
13	Influence of wheat, rye, and triticale straw on the properties of natural rubber composites. Advances in Polymer Technology, 2018, 37, 2866-2878.	0.8	17
14	Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers, 2021, 13, 799.	2.0	17
15	Potential Application of Peppermint (Mentha piperita L.), German Chamomile (Matricaria chamomilla L.) and Yarrow (Achillea millefolium L.) as Active Fillers in Natural Rubber Biocomposites. International Journal of Molecular Sciences, 2021, 22, 7530.	1.8	16
16	POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2019, 76, 3387-3402.	1.7	15
17	Influence of peroxide modifications on the properties of cereal straw and natural rubber composites. Cellulose, 2018, 25, 4711-4728.	2.4	13
18	Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites. Materials, 2021, 14, 1616.	1.3	12

Marcin MasÅ,owski

#	Article	IF	CITATIONS
19	Straw/Nano-Additive Hybrids as Functional Fillers for Natural Rubber Biocomposites. Materials, 2021, 14, 321.	1.3	12
20	Effect of Accelerated Curing Conditions on Shear Strength and Glass Transition Temperature of Epoxy Adhesives. Procedia Engineering, 2017, 193, 423-430.	1.2	11
21	Anti-Oxidative Activity of Alcohol-Water Extracts from Field Horsetail (Equisteum arvense) in Elastomer Vulcanizates Subjected to Accelerated Aging Processes. Materials, 2020, 13, 4903.	1.3	11
22	The effect of short polystyrene brushes grafted from graphene oxide on the behavior of miscible PMMA/SAN blends. Polymer, 2020, 211, 123088.	1.8	9
23	Smart Materials Based on Magnetorheological Composites. Materials Science Forum, 0, 714, 167-173.	0.3	8
24	Effect of graphite and common rubber plasticizers on properties and performance of ceramizable styrene–butadiene rubber-based composites. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2409-2417.	2.0	8
25	Cereal straw and their physical modifications with hydrophilic and hydrophobic silica – The influence of functional hybrid material on natural rubber biocomposites. European Polymer Journal, 2019, 112, 176-185.	2.6	8
26	Hybrid Straw/Perlite Reinforced Natural Rubber Biocomposites. Journal of Bionic Engineering, 2019, 16, 1127-1142.	2.7	7
27	Elastomers Containing Fillers with Magnetic Properties. Solid State Phenomena, 0, 154, 121-126.	0.3	5
28	Reinforced, Extruded, Isotropic Magnetic Elastomer Composites: Fabrication and Properties. Advances in Polymer Technology, 2019, 2019, 1-11.	0.8	5
29	Effect of thermooxidative and photooxidative ageing processes on mechanical properties of magnetorheological elastomer composites. Polimery, 2015, 60, 264-271.	0.4	5
30	Antioxidant and Anti–Aging Activity of Freeze–Dried Alcohol–Water Extracts from Common Nettle (Urtica dioica L.) and Peppermint (Mentha piperita L.) in Elastomer Vulcanizates. Polymers, 2022, 14, 1460.	2.0	5
31	Magnetic (ethylene-octene) elastomer composites obtained by extrusion. Polymer Engineering and Science, 2017, 57, 520-527.	1.5	4
32	Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Properties. Materials, 2020, 13, 1598.	1.3	4
33	Natural Rubber Biocomposites Filled with Phyto-Ashes Rich in Biogenic Silica Obtained from Wheat Straw and Field Horsetail. Polymers, 2021, 13, 1177.	2.0	3
34	Magnetorheological materials based on ethylene-octene elastomer. Polimery, 2014, 59, 825-833.	0.4	3
35	Effect of ionic liquids on the selected properties of magnetic composites filled with micro-sized iron oxide (Fe3O4). Polimery, 2016, 61, 117-124.	0.4	3
36	Mechanical and Electrical Performance of Flexible Polymer Film Designed for a Textile Electrically-Conductive Path. Materials, 2021, 14, 2169.	1.3	2

#	Article	IF	CITATIONS
37	Evaluation of the Elastomeric Composite Self-repair Process for the Construction of Protective Gloves. Fibres and Textiles in Eastern Europe, 2018, 26, 104-110.	0.2	2
38	Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives, Part 2: Flammability, Thermo-Oxidative Aging Resistance, Mechanical and Barrier Properties. Materials, 2020, 13, 1608.	1.3	1
39	Properties of Natural Rubber Biocomposities Filled with Alkaline Modified Oat Straw. Journal of Renewable Materials, 2018, 6, 746-754.	1.1	1