Rita A Lawlor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693755/publications.pdf

Version: 2024-02-01

76326 19190 15,473 119 40 118 citations h-index g-index papers 126 126 126 22520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
2	Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.	27.8	2,132
3	International network of cancer genome projects. Nature, 2010, 464, 993-998.	27.8	2,114
4	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.	27.8	1,741
5	Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 2017, 543, 65-71.	27.8	716
6	Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 2013, 45, 1470-1473.	21.4	564
7	Enabling the genomic revolution in Africa. Science, 2014, 344, 1346-1348.	12.6	361
8	Targeted nextâ€generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. Journal of Pathology, 2014, 233, 217-227.	4.5	308
9	Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. Journal of Hepatology, 2018, 68, 959-969.	3.7	254
10	DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples. PLoS ONE, 2013, 8, e62692.	2.5	209
11	Genomeâ€wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLITâ€ROBO, ITGA2 and MET signaling. International Journal of Cancer, 2014, 135, 1110-1118.	5.1	192
12	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
13	Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatinâ€remodelling genes as major players and a prognostic role for <i><scp>TERT</scp></i> , <i><scp>RB1</scp></i> , <i><scp>MEN1</scp></i> and <scp><i>KMT2D</i></scp> . lournal of Pathology, 2017, 241, 488-500.	4.5	179
14	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	1.3	174
15	Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget, 2014, 5, 2839-2852.	1.8	171
16	A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. Cancer Discovery, 2015, 5, 1296-1313.	9.4	145
17	Histomolecular Phenotypes and Outcome in Adenocarcinoma of the Ampulla of Vater. Journal of Clinical Oncology, 2013, 31, 1348-1356.	1.6	142
18	Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut, 2021, 70, 148-156.	12.1	139

#	Article	IF	CITATIONS
19	A multimodality test to guide the management of patients with a pancreatic cyst. Science Translational Medicine, 2019, 11, .	12.4	129
20	Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3., 2019, 7, 255.		123
21	Molecular Tumor Boards in Clinical Practice. Trends in Cancer, 2020, 6, 738-744.	7.4	94
22	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
23	Competitive Testing of the WHO 2010 versus the WHO 2017 Grading of Pancreatic Neuroendocrine Neoplasms: Data from a Large International Cohort Study. Neuroendocrinology, 2018, 107, 375-386.	2.5	78
24	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	6.4	78
25	Cholangiocarcinoma Heterogeneity Revealed by Multigene Mutational Profiling: Clinical and Prognostic Relevance in Surgically Resected Patients. Annals of Surgical Oncology, 2016, 23, 1699-1707.	1.5	76
26	Gene Expression Profiling of Lung Atypical Carcinoids and Large Cell Neuroendocrine Carcinomas Identifies Three Transcriptomic Subtypes with Specific Genomic Alterations. Journal of Thoracic Oncology, 2019, 14, 1651-1661.	1.1	73
27	Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Pancreatic Cancer: Systematic Review and Still-Open Questions. Cancers, 2021, 13, 3119.	3.7	69
28	Urine Metabolic Signature of Pancreatic Ductal Adenocarcinoma by ¹ H Nuclear Magnetic Resonance: Identification, Mapping, and Evolution. Journal of Proteome Research, 2012, 11, 1274-1283.	3.7	68
29	Building capacity for sustainable research programmes for cancer in Africa. Nature Reviews Clinical Oncology, 2014, 11, 251-259.	27.6	68
30	BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing. Oncotarget, 2016, 7, 1076-1083.	1.8	68
31	The integrin $\hat{l}\pm v\hat{l}^26$ drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 2019, 249, 332-342.	4.5	66
32	Genetic Analysis of Small Well-differentiated Pancreatic Neuroendocrine Tumors Identifies Subgroups With Differing Risks of Liver Metastases. Annals of Surgery, 2020, 271, 566-573.	4.2	64
33	Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut, 2022, 71, 961-973.	12.1	60
34	Telomere length and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Research Reviews, 2019, 51, 1-10.	10.9	59
35	Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut, 2017, 66, 314-322.	12.1	56
36	Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nature Communications, 2021, 12, 5623.	12.8	53

#	Article	IF	CITATIONS
37	KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities. Journal of Experimental and Clinical Cancer Research, 2020, 39, 227.	8.6	49
38	Loss of BAP1 Expression Occurs Frequently in Intrahepatic Cholangiocarcinoma. Medicine (United) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
39	Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic <i>KLF4</i> mutations predominantly in low-grade regions. Gut, 2021, 70, 928-939.	12.1	48
40	Induction of immunosuppressive functions and NF- $\hat{\mathbb{I}}^2B$ by FLIP in monocytes. Nature Communications, 2018, 9, 5193.	12.8	45
41	Prognostic Role of High-Grade Tumor Budding in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis with a Focus on Epithelial to Mesenchymal Transition. Cancers, 2019, 11, 113.	3.7	45
42	PD-1, PD-L1, and CD163 in pancreatic undifferentiated carcinoma with osteoclast-like giant cells: expression patterns and clinical implications. Human Pathology, 2018, 81, 157-165.	2.0	44
43	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	9.4	44
44	Mutational and copy number asset of primary sporadic neuroendocrine tumors of the small intestine. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 473, 709-717.	2.8	40
45	Evaluation of cell-free DNA as a biomarker for pancreatic malignancies. International Journal of Biological Markers, 2015, 30, 136-141.	1.8	39
46	Genetic alterations analysis in prognostic stratified groups identified TP53 and ARID1A as poor clinical performance markers in intrahepatic cholangiocarcinoma. Scientific Reports, 2018, 8, 7119.	3.3	39
47	Pancreatic Cancer Risk in Relation to Lifetime Smoking Patterns, Tobacco Type, and Dose–Response Relationships. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1009-1018.	2.5	39
48	Endoscopic ultrasound-guided fine-needle aspiration for the diagnosis and grading of pancreatic neuroendocrine tumors: a retrospective analysis of 110 cases. Endoscopy, 2020, 52, 988-994.	1.8	38
49	Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: a systematic review with meta-analysis. BMC Cancer, 2019, 19, 232.	2.6	37
50	Analytical Validation of Multiplex Biomarker Assay to Stratify Colorectal Cancer into Molecular Subtypes. Scientific Reports, 2019, 9, 7665.	3.3	36
51	Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. International Journal of Cancer, 2019, 144, 1275-1283.	5.1	36
52	Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses. Gut, 2021, 70, gutjnl-2019-319990.	12.1	36
53	Ampulla of Vater Carcinoma. Annals of Surgery, 2018, 267, 149-156.	4.2	35
54	Cyst Fluid Biosignature to Predict Intraductal Papillary Mucinous Neoplasms of the Pancreas with High Malignant Potential. Journal of the American College of Surgeons, 2019, 228, 721-729.	0.5	35

#	Article	IF	Citations
55	Reporting Tumor Molecular Heterogeneity in Histopathological Diagnosis. PLoS ONE, 2014, 9, e104979.	2.5	35
56	Splice variants as novel targets in pancreatic ductal adenocarcinoma. Scientific Reports, 2017, 7, 2980.	3.3	34
57	Ampulla of Vater carcinoma: Molecular landscape and clinical implications. World Journal of Gastrointestinal Oncology, 2018, 10, 370-380.	2.0	34
58	Molecular alterations associated with metastases of solid pseudopapillary neoplasms of the pancreas. Journal of Pathology, 2019, 247, 123-134.	4.5	32
59	Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine?. Gut, 2021, 70, 1768-1781.	12.1	28
60	DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 2021, 4, 155.	4.4	26
61	Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology, 2022, 162, 320-324.e4.	1.3	26
62	Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterology, 2020, 20, 137.	2.0	25
63	Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug. Journal of Experimental and Clinical Cancer Research, 2021, 40, 382.	8.6	25
64	Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours. Gut, 2021, 70, 1904-1913.	12.1	24
65	The pattern of hMENA isoforms is regulated by TGF- \hat{l}^21 in pancreatic cancer and may predict patient outcome. Oncolmmunology, 2016, 5, e1221556.	4.6	23
66	Genomeâ€wide scan of long noncoding <scp>RNA</scp> single nucleotide polymorphism <scp>s</scp> and pancreatic cancer susceptibility. International Journal of Cancer, 2021, 148, 2779-2788.	5.1	23
67	Histo-molecular oncogenesis of pancreatic cancer: From precancerous lesions to invasive ductal adenocarcinoma. World Journal of Gastrointestinal Oncology, 2018, 10, 317-327.	2.0	22
68	Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. , 2022, 10, e003549.		22
69	A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk. Annals of Oncology, 2017, 28, 1618-1624.	1.2	20
70	Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. Modern Pathology, 2018, 31, 1532-1538.	5.5	20
71	Germline <i>BRCA2</i> K3326X and <i>CHEK2</i> I157T mutations increase risk for sporadic pancreatic ductal adenocarcinoma. International Journal of Cancer, 2019, 145, 686-693.	5.1	20
72	Pancreatic cancer arising in the remnant pancreas is not always a relapse of the preceding primary. Modern Pathology, 2019, 32, 659-665.	5.5	20

#	Article	IF	CITATIONS
73	Genomeâ€wide association study identifies an early onset pancreatic cancer risk locus. International Journal of Cancer, 2020, 147, 2065-2074.	5.1	20
74	The actin modulator <scp>hMENA</scp> regulates <scp>GAS</scp> 6― <scp>AXL</scp> axis and proâ€tumor cancer/stromal cell cooperation. EMBO Reports, 2020, 21, e50078.	4.5	20
75	CD200 expression is a feature of solid pseudopapillary neoplasms of the pancreas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 105-109.	2.8	19
76	Comparison Between Prognostic Classifications in De Novo Metastatic Hormone Sensitive Prostate Cancer. Targeted Oncology, 2018, 13, 649-655.	3.6	18
77	Biospecimens and Biobanking in Global Health. Clinics in Laboratory Medicine, 2018, 38, 183-207.	1.4	16
78	Common genetic variants associated with pancreatic adenocarcinoma may also modify risk of pancreatic neuroendocrine neoplasms. Carcinogenesis, 2018, 39, 360-367.	2.8	16
79	Epithelial-mesenchymal transition in undifferentiated carcinoma of the pancreas with and without osteoclast-like giant cells. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 319-326.	2.8	16
80	Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma. Npj Precision Oncology, 2021, 5, 61.	5.4	16
81	Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Scientific Reports, 2016, 6, 39565.	3.3	15
82	SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Scientific Reports, 2017, 7, 43812.	3.3	15
83	CD117 Is a Specific Marker of Intraductal Papillary Mucinous Neoplasms (IPMN) of the Pancreas, Oncocytic Subtype. International Journal of Molecular Sciences, 2020, 21, 5794.	4.1	15
84	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	8.2	15
85	Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis, 2021, 42, 1037-1045.	2.8	14
86	Solid Pseudopapillary Neoplasm of the Pancreas and Abdominal Desmoid Tumor in a Patient Carrying Two Different BRCA2 Germline Mutations: New Horizons from Tumor Molecular Profiling. Genes, 2021, 12, 481.	2.4	13
87	Alternative Lengthening of Telomeres (ALT) in Pancreatic Neuroendocrine Tumors: Ready for Prime-Time in Clinical Practice?. Current Oncology Reports, 2021, 23, 106.	4.0	12
88	Histo-molecular characterization of pancreatic cancer with microsatellite instability: intra-tumor heterogeneity, B2M inactivation, and the importance of metastatic sites. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 1261-1268.	2.8	12
89	Pancreatic cancer and autoimmune diseases: An association sustained by computational and epidemiological case–control approaches. International Journal of Cancer, 2019, 144, 1540-1549.	5.1	11
90	Perineural Invasion is a Strong Prognostic Moderator in Ampulla of Vater Carcinoma. Pancreas, 2019, 48, 70-76.	1.1	11

#	Article	IF	Citations
91	Placenta-Specific 8 Is Overexpressed and Regulates Cell Proliferation in Low-Grade Human Pancreatic Neuroendocrine Tumors. Neuroendocrinology, 2020, 110, 23-34.	2.5	10
92	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	2.3	10
93	IDH-wild type glioblastomas featuring at least 30% giant cells are characterized by frequent RB1 and NF1 alterations and hypermutation. Acta Neuropathologica Communications, 2021, 9, 200.	5.2	10
94	<i>à€œLife in Dataâ€</i> à€"Outcome of a Multi-Disciplinary, Interactive Biobanking Conference Session on Sample Data. Biopreservation and Biobanking, 2016, 14, 56-64.	1.0	9
95	Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material. Oncotarget, 2017, 8, 108223-108237.	1.8	9
96	Multigene mutational profiling of biliary tract cancer is related to the pattern of recurrence in surgically resected patients. Updates in Surgery, 2020, 72, 119-128.	2.0	9
97	Genomic characterization of hepatoid tumors: context matters. Human Pathology, 2021, 118, 30-41.	2.0	9
98	Genetic variability of the ABCC2 gene and clinical outcomes in pancreatic cancer patients. Carcinogenesis, 2019, 40, 544-550.	2.8	8
99	Organoid-Transplant Model Systems to Study the Effects of Obesity on the Pancreatic Carcinogenesis in vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 308.	3.7	8
100	The Mutant p53-Driven Secretome Has Oncogenic Functions in Pancreatic Ductal Adenocarcinoma Cells. Biomolecules, 2020, 10, 884.	4.0	8
101	Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk. Frontiers in Oncology, 2021, 11, 771312.	2.8	8
102	The Italian Rare Pancreatic Exocrine Cancer Initiative. Tumori, 2019, 105, 353-358.	1.1	7
103	Epithelial <i>Nr5a2</i> heterozygosity cooperates with mutant <i>Kras</i> in the development of pancreatic cystic lesions. Journal of Pathology, 2021, 253, 174-185.	4.5	7
104	Colorectal cancer with microsatellite instability: Right-sided location and signet ring cell histology are associated with nodal metastases, and extranodal extension influences disease-free survival. Pathology Research and Practice, 2021, 224, 153519.	2.3	7
105	Combinatorial Effect of Magnetic Field and Radiotherapy in PDAC Organoids: A Pilot Study. Biomedicines, 2020, 8, 609.	3.2	6
106	ICGC-ARGO precision medicine: familial matters in pancreatic cancer. Lancet Oncology, The, 2022, 23, 25-26.	10.7	6
107	"Pure―hepatoid tumors of the pancreas harboring CTNNB1 somatic mutations: a new entity among solid pseudopapillary neoplasms. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 41-47.	2.8	6
108	Genomic characterization of undifferentiated sarcomatoid carcinoma of the pancreas. Human Pathology, 2022, 128, 124-133.	2.0	6

#	Article	IF	CITATIONS
109	New genomic landscapes and therapeutic targets for biliary tract cancers. Frontiers in Bioscience - Landmark, 2016, 21, 707-718.	3.0	5
110	Lack of Association for Reported Endocrine Pancreatic Cancer Risk Loci in the PANDoRA Consortium. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1349-1351.	2.5	5
111	Endoscopic ultrasound guided fine needle biopsy samples to drive personalized medicine: A proof of concept study. Pancreatology, 2020, 20, 778-780.	1.1	5
112	Molecular Analysis of an Intestinal Neuroendocrine/Non-neuroendocrine Neoplasm (MiNEN) Reveals MLH1 Methylation-driven Microsatellite Instability and a Monoclonal Origin: Diagnostic and Clinical Implications. Applied Immunohistochemistry and Molecular Morphology, 2022, 30, 145-152.	1.2	5
113	Refining targeted therapeutic approaches in pancreatic cancer: from histology and molecular pathology to the clinic. Expert Opinion on Therapeutic Targets, 2022, 26, 1-4.	3.4	5
114	Genetic Polymorphisms Involved in Mitochondrial Metabolism and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2342-2345.	2.5	4
115	ROR1 and ROR2 expression in pancreatic cancer. BMC Cancer, 2021, 21, 1199.	2.6	4
116	Juvenile polyposis diagnosed with an integrated histological, immunohistochemical and molecular approach identifying new SMAD4 pathogenic variants. Familial Cancer, 2022, 21, 441-451.	1.9	3
117	Biobanks in Low Resource Contexts. , 2017, , 169-198.		2
118	ERG alterations and mTOR pathway activation in primary prostate carcinomas developing castration-resistance. Pathology Research and Practice, 2018, 214, 1675-1680.	2.3	1
119	Comparative Lesions Analysis Through a Targeted Sequencing Approach. Journal of Visualized Experiments, 2019, , .	0.3	O