Samantha J Lycett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009, 459, 1122-1125.	13.7	1,870
2	Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell, 2021, 184, 1171-1187.e20.	13.5	541
3	The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 2013, 502, 241-244.	13.7	429
4	Role for migratory wild birds in the global spread of avian influenza H5N8. Science, 2016, 354, 213-217.	6.0	362
5	Fast Dating Using Least-Squares Criteria and Algorithms. Systematic Biology, 2016, 65, 82-97.	2.7	336
6	Automated analysis of phylogenetic clusters. BMC Bioinformatics, 2013, 14, 317.	1.2	305
7	Transmission Network Parameters Estimated From HIV Sequences for a Nationwide Epidemic. Journal of Infectious Diseases, 2011, 204, 1463-1469.	1.9	184
8	Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerging Infectious Diseases, 2021, 27, 1405-1415.	2.0	168
9	Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology and Evolution, 2018, 2, 1468-1478.	3.4	156
10	Molecular Phylodynamics of the Heterosexual HIV Epidemic in the United Kingdom. PLoS Pathogens, 2009, 5, e1000590.	2.1	155
11	A brief history of bird flu. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180257.	1.8	137
12	Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends in Microbiology, 2014, 22, 282-291.	3.5	115
13	Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genomics, 2017, 18, 180.	1.2	86
14	Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nature Communications, 2021, 12, 6802.	5.8	81
15	Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evolutionary Biology, 2014, 14, 16.	3.2	77
16	Detection of Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: Multivariate Analysis of Published Data. Journal of Virology, 2009, 83, 9901-9910.	1.5	76
17	The Short Stalk Length of Highly Pathogenic Avian Influenza H5N1 Virus Neuraminidase Limits Transmission of Pandemic H1N1 Virus in Ferrets. Journal of Virology, 2013, 87, 10539-10551.	1.5	72
18	Assessing the Epidemic Potential of RNA and DNA Viruses. Emerging Infectious Diseases, 2016, 22, 2037-2044.	2.0	72

SAMANTHA J LYCETT

#	Article	IF	CITATIONS
19	Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis. Epidemics, 2016, 14, 26-35.	1.5	70
20	Phylogenetic analyses reveal HIV-1 infections between men misclassified as heterosexual transmissions. Aids, 2014, 28, 1967-1975.	1.0	69
21	Transmission of Non-B HIV Subtypes in the United Kingdom Is Increasingly Driven by Large Non-Heterosexual Transmission Clusters. Journal of Infectious Diseases, 2016, 213, 1410-1418.	1.9	67
22	Reassortment between Influenza B Lineages and the Emergence of a Coadapted PB1–PB2–HA Gene Complex. Molecular Biology and Evolution, 2015, 32, 162-172.	3.5	63
23	Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20814-20825.	3.3	63
24	Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. ELife, 2019, 8, .	2.8	63
25	The Effect of the PB2 Mutation 627K on Highly Pathogenic H5N1 Avian Influenza Virus Is Dependent on the Virus Lineage. Journal of Virology, 2013, 87, 9983-9996.	1.5	56
26	Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison. Molecular Biology and Evolution, 2017, 34, 185-203.	3.5	53
27	Investigation of Influenza Virus Polymerase Activity in Pig Cells. Journal of Virology, 2013, 87, 384-394.	1.5	46
28	Estimating reassortment rates in co-circulating Eurasian swine influenza viruses. Journal of General Virology, 2012, 93, 2326-2336.	1.3	42
29	Real-time characterization of the molecular epidemiology of an influenza pandemic. Biology Letters, 2013, 9, 20130331.	1.0	41
30	The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120382.	1.8	40
31	Mycobacterium bovis genomics reveals transmission of infection between cattle and deer in Ireland. Microbial Genomics, 2020, 6, .	1.0	39
32	Phylogenetic Structure and Sequential Dominance of Sub-Lineages of PRRSV Type-2 Lineage 1 in the United States. Vaccines, 2021, 9, 608.	2.1	38
33	Predicting vaccine effectiveness in livestock populations: A theoretical framework applied to PRRS virus infections in pigs. PLoS ONE, 2019, 14, e0220738.	1.1	32
34	Quantifying predictors for the spatial diffusion of avian influenza virus in China. BMC Evolutionary Biology, 2017, 17, 16.	3.2	31
35	Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biology, 2020, 18, 136.	1.7	28
36	Bones hold the key to DNA virus history and epidemiology. Scientific Reports, 2015, 5, 17226.	1.6	27

SAMANTHA J LYCETT

#	Article	IF	CITATIONS
37	Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity. Journal of Virology, 2016, 90, 9263-9284.	1.5	26
38	A guide to machine learning for bacterial host attribution using genome sequence data. Microbial Genomics, 2019, 5, .	1.0	26
39	Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico. PLoS ONE, 2014, 9, e107330.	1.1	25
40	Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza. BMC Evolutionary Biology, 2013, 13, 222.	3.2	24
41	Estimating the Rate of Intersubtype Recombination in Early HIV-1 Group M Strains. Journal of Virology, 2013, 87, 1967-1973.	1.5	24
42	Phylogeographic Analysis and Identification of Factors Impacting the Diffusion of Foot-and-Mouth Disease Virus in Africa. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	22
43	Phylodynamic analysis of an emergent <i>Mycobacterium bovis</i> outbreak in an area with no previously known wildlife infections. Journal of Applied Ecology, 2022, 59, 210-222.	1.9	19
44	A Direct Comparison of Two Densely Sampled HIV Epidemics: The UK and Switzerland. Scientific Reports, 2016, 6, 32251.	1.6	17
45	The evolution and phylodynamics of serotype A and SAT2 foot-and-mouth disease viruses in endemic regions of Africa. Scientific Reports, 2019, 9, 5614.	1.6	17
46	Re-emergence of H5N8 highly pathogenic avian influenza virus in wild birds, China. Emerging Microbes and Infections, 2021, 10, 1819-1823.	3.0	17
47	Broadwick: a framework for computational epidemiology. BMC Bioinformatics, 2016, 17, 65.	1.2	15
48	Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. Journal of Virology, 2020, 94, .	1.5	15
49	Prevalence and risk factors associated with failure of transfer of passive immunity in spring born beef suckler calves in Great Britain. Preventive Veterinary Medicine, 2020, 181, 105059.	0.7	15
50	Integrating animal movements with phylogeography to model the spread of PRRSV in the USA. Virus Evolution, 2021, 7, veab060.	2.2	14
51	Origin and fate of A/H1N1 influenza in Scotland during 2009. Journal of General Virology, 2012, 93, 1253-1260.	1.3	14
52	Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry. Epidemics, 2016, 17, 27-34.	1.5	13
53	Accessory Gene Products of Influenza A Virus. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038380.	2.9	12
54	The fall and rise of group B Streptococcus in dairy cattle: reintroduction due to human-to-cattle host jumps?. Microbial Genomics, 2021, 7, .	1.0	12

SAMANTHA J LYCETT

#	Article	IF	CITATIONS
55	Analysis of bovine viral diarrhoea virus: Biobank and sequence database to support eradication in Scotland. Veterinary Record, 2017, 180, 447-447.	0.2	10
56	Pervasive and non-random recombination in near full-length HIV genomes from Uganda. Virus Evolution, 2020, 6, veaa004.	2.2	9
57	Using machine learning improves predictions of herd-level bovine tuberculosis breakdowns in Great Britain. Scientific Reports, 2021, 11, 2208.	1.6	9
58	What are SARS-CoV-2 genomes from the WHO Africa region member states telling us?. BMJ Global Health, 2021, 6, e004408.	2.0	9
59	Influence of segregation in quantum well structures. Journal of Materials Science: Materials in Electronics, 1996, 7, 341.	1.1	2
60	Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations. Scientific Reports, 2020, 10, 21980.	1.6	2
61	Observation of blue shift in GaAs/InGaP quantum well p-i-n diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 323-326.	1.7	1
62	Bones hold the key to virus history and epidemiology. Journal of Clinical Virology, 2015, 70, S81.	1.6	1
63	Dealing with Highly Pathogenic Avian Influenza: An Impending Crisis. Innovation(China), 2021, 2, 100084.	5.2	1
64	An advantage of chaotic neural dynamics. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	0