
## Tsuyoshi Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693068/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Inhibitory effect of honokiol on furin-like activity and SARS-CoV-2 infection. Journal of Traditional and Complementary Medicine, 2022, 12, 69-72.                                                     | 2.7  | 18        |
| 2  | Evaluation of Heat Inactivation of Human Norovirus in Freshwater Clams Using Human Intestinal<br>Enteroids. Viruses, 2022, 14, 1014.                                                                   | 3.3  | 7         |
| 3  | The predicted stem-loop structure in the 3′-end of the human norovirus antigenomic sequence is required for its genomic RNA synthesis by its RdRp. Journal of Biological Chemistry, 2021, 297, 101225. | 3.4  | 2         |
| 4  | Dasabuvir Inhibits Human Norovirus Infection in Human Intestinal Enteroids. MSphere, 2021, 6, e0062321.                                                                                                | 2.9  | 19        |
| 5  | Inhibition of Polo-like kinase 1 (PLK1) facilitates the elimination of HIV-1 viral reservoirs in CD4<br><sup>+</sup> T cells ex vivo. Science Advances, 2020, 6, eaba1941.                             | 10.3 | 16        |
| 6  | Diversified Application of Barcoded PLATO (PLATO-BC) Platform for Identification of Protein Interactions. Genomics, Proteomics and Bioinformatics, 2019, 17, 319-331.                                  | 6.9  | 5         |
| 7  | A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Research, 2019, 47, 7333-7347.                                             | 14.5 | 35        |
| 8  | Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting<br>Host and Viral Factors. AIDS Research and Human Retroviruses, 2019, 35, 1-24.                      | 1.1  | 20        |
| 9  | Specificity and functional interplay between influenza virus PA-X and NS1 shutoff activity. PLoS<br>Pathogens, 2018, 14, e1007465.                                                                     | 4.7  | 33        |
| 10 | Selective incorporation of vRNP into influenza A virions determined by its specific interaction with M1 protein. Virology, 2017, 505, 23-32.                                                           | 2.4  | 16        |
| 11 | Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology, 2017, 501, 127-135.                                                                                            | 2.4  | 30        |
| 12 | Rescue of Sendai Virus from Cloned cDNA. Methods in Molecular Biology, 2017, 1602, 103-110.                                                                                                            | 0.9  | 3         |
| 13 | Screening of an FDA-approved compound library identifies levosimendan as a novel anti-HIV-1 agent that inhibits viral transcription. Antiviral Research, 2017, 146, 76-85.                             | 4.1  | 27        |
| 14 | Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses.<br>Virology, 2017, 510, 234-241.                                                               | 2.4  | 78        |
| 15 | A Novel Bromodomain Inhibitor Reverses HIV-1 Latency through Specific Binding with BRD4 to Promote<br>Tat and P-TEFb Association. Frontiers in Microbiology, 2017, 8, 1035.                            | 3.5  | 45        |
| 16 | Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation. Frontiers in Microbiology, 2017, 8, 2007.                                            | 3.5  | 28        |
| 17 | Critical Role of the PA-X C-Terminal Domain of Influenza A Virus in Its Subcellular Localization and<br>Shutoff Activity. Journal of Virology, 2016, 90, 7131-7141.                                    | 3.4  | 49        |
| 18 | Critical role of Rab11a-mediated recycling endosomes in the assembly of type I parainfluenza viruses.<br>Virology, 2016, 487, 11-18.                                                                   | 2.4  | 23        |

Тѕичоѕні Начаѕні

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus<br>Growth in Mammalian Cells at Low Temperatures. Journal of Virology, 2015, 89, 8042-8049.                                           | 3.4 | 30        |
| 20 | Influenza A Virus Protein PA-X Contributes to Viral Growth and Suppression of the Host Antiviral and<br>Immune Responses. Journal of Virology, 2015, 89, 6442-6452.                                                                       | 3.4 | 98        |
| 21 | Impact of influenza PA-X on host response. Oncotarget, 2015, 6, 19364-19365.                                                                                                                                                              | 1.8 | 6         |
| 22 | Chicken MDA5 Senses Short Double-Stranded RNA with Implications for Antiviral Response against Avian Influenza Viruses in Chicken. Journal of Innate Immunity, 2014, 6, 58-71.                                                            | 3.8 | 61        |
| 23 | Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam. Archives of Virology, 2013, 158, 859-876.                                                                                                        | 2.1 | 24        |
| 24 | ldentification of Host Genes Linked with the Survivability of Chickens Infected with Recombinant<br>Viruses Possessing H5N1 Surface Antigens from a Highly Pathogenic Avian Influenza Virus. Journal of<br>Virology, 2012, 86, 2686-2695. | 3.4 | 25        |
| 25 | lsolation of the Pandemic (H1N1) 2009 virus and its reassortant with an H3N2 swine influenza virus<br>from healthy weaning pigs in Thailand in 2011. Virus Research, 2012, 169, 175-181.                                                  | 2.2 | 41        |
| 26 | Genetics and infectivity of H5N1 highly pathogenic avian influenza viruses isolated from chickens and wild birds in Japan during 2010–11. Virus Research, 2012, 170, 109-117.                                                             | 2.2 | 24        |
| 27 | Differential host gene responses in mice infected with two highly pathogenic avian influenza viruses of subtype H5N1 isolated from wild birds in Thailand. Virology, 2011, 412, 9-18.                                                     | 2.4 | 10        |
| 28 | Swine influenza virus infection in different age groups of pigs in farrow-to-finish farms in Thailand.<br>Virology Journal, 2011, 8, 537.                                                                                                 | 3.4 | 26        |
| 29 | Host Cytokine Responses of Pigeons Infected with Highly Pathogenic Thai Avian Influenza Viruses of<br>Subtype H5N1 Isolated from Wild Birds. PLoS ONE, 2011, 6, e23103.                                                                   | 2.5 | 37        |
| 30 | Occurrence of a Pig Respiratory Disease Associated with Swine Influenza A (H1N2) Virus in Tochigi<br>Prefecture, Japan. Journal of Veterinary Medical Science, 2010, 72, 481-488.                                                         | 0.9 | 8         |
| 31 | Real-time reverse transcription-PCR assay for differentiating the Pandemic H1N1 2009 influenza virus from swine influenza viruses. Journal of Virological Methods, 2010, 170, 169-172.                                                    | 2.1 | 7         |
| 32 | Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. Journal of General Virology, 2010, 91, 938-948.                                                      | 2.9 | 43        |
| 33 | Molecular epidemiological analysis of highly pathogenic avian influenza H5N1 subtype isolated from poultry and wild bird in Thailand. Virus Research, 2008, 138, 70-80.                                                                   | 2.2 | 29        |