
Long Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8693033/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresource Technology, 2013, 146, 254-260.	4.8	179
2	Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. International Journal of Hydrogen Energy, 2015, 40, 15460-15469.	3.8	162
3	Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures. Bioresource Technology, 2015, 192, 23-30.	4.8	161
4	Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresource Technology, 2012, 116, 278-284.	4.8	160
5	Effects of heating rate on the evolution of bio-oil during its pyrolysis. Energy Conversion and Management, 2018, 163, 420-427.	4.4	137
6	FTIR study of pyrolysis products evolving from typical agricultural residues. Journal of Analytical and Applied Pyrolysis, 2010, 88, 117-123.	2.6	133
7	Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process. Applied Energy, 2016, 182, 20-28.	5.1	93
8	Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2016, 41, 17967-17975.	3.8	75
9	Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant. Energy Conversion and Management, 2017, 147, 155-165.	4.4	74
10	Study on Char Surface Active Sites and Their Relationship to Gasification Reactivity. Energy & Fuels, 2013, 27, 118-125.	2.5	70
11	Exergy analysis of the turbine system in a 1000ÂMW double reheat ultra-supercritical power plant. Energy, 2017, 119, 540-548.	4.5	70
12	Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis. Bioresource Technology, 2017, 236, 138-145.	4.8	68
13	Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: Roles of catalyst supports. Fuel Processing Technology, 2018, 176, 7-14.	3.7	68
14	Molecular structure characterization of the tetrahydrofuran-microwave-extracted portions from three Chinese low-rank coals. Fuel, 2017, 189, 178-185.	3.4	60
15	Opposite effects of self-growth amorphous carbon and carbon nanotubes on the reforming of toluene with Ni/l±-Al2O3 for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 14439-14448.	3.8	58
16	Co-production of hydrogen and carbon nanotubes from the decomposition/reforming of biomass-derived organics over Ni/α-Al2O3 catalyst: Performance of different compounds. Fuel, 2017, 210, 307-314.	3.4	50
17	Catalytic behaviors of alkali metal salt involved in homogeneous volatile and heterogeneous char reforming in steam gasification of cellulose. Energy Conversion and Management, 2018, 158, 147-155.	4.4	50
18	Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism. Biomass and Bioenergy, 2022, 159, 106415.	2.9	50

Long Jiang

#	Article	IF	CITATIONS
19	Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives. Energy & Fuels, 2021, 35, 2870-2913.	2.5	48
20	Sulfur self-doped char with high specific capacitance derived from waste tire: Effects of pyrolysis temperature. Science of the Total Environment, 2020, 741, 140193.	3.9	43
21	Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil. Fuel Processing Technology, 2017, 158, 180-190.	3.7	41
22	Effects of AAEMs on formation of heavy components in bio-oil during pyrolysis at various temperatures and heating rates. Fuel Processing Technology, 2021, 213, 106690.	3.7	41
23	Evolution characteristics of different types of coke deposition during catalytic removal of biomass tar. Journal of the Energy Institute, 2020, 93, 2497-2504.	2.7	33
24	Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and Applied Pyrolysis, 2020, 151, 104899.	2.6	33
25	Evolution of heavy components during sewage sludge pyrolysis: A study using an electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel Processing Technology, 2018, 175, 97-103.	3.7	32
26	Effects of vapor-/solid-phase interactions among cellulose, hemicellulose and lignin on the formation of heavy components in bio-oil during pyrolysis. Fuel Processing Technology, 2022, 225, 107042.	3.7	31
27	Formation, fates and roles of catalytic precursors generated from the K2CO3-carbon interactions in the K2CO3-catalyzed CO2 gasification of coal char. Journal of Analytical and Applied Pyrolysis, 2017, 124, 384-392.	2.6	27
28	Effect of preparation conditions on MnxOy/Al2O3 sorbent for H2S removal from high-temperature synthesis gas. Fuel, 2018, 223, 115-124.	3.4	27
29	Effect of temperature on Shenfu coal pyrolysis process related to its chemical structure transformation. Fuel Processing Technology, 2021, 213, 106662.	3.7	27
30	The synergistic effect of Ca(OH) 2 on the process ofÂlignite steam gasification to produce hydrogen-rich gas. International Journal of Hydrogen Energy, 2014, 39, 15506-15516.	3.8	25
31	A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation. Energy Conversion and Management, 2022, 254, 115205.	4.4	25
32	Mechanistic influences of different solvents on microwave-assisted extraction of Shenfu low-rank coal. Fuel Processing Technology, 2017, 166, 276-281.	3.7	24
33	Study on the structural evolution of semi-chars and their solvent extracted materials during pyrolysis process of a Chinese low-rank coal. Fuel, 2018, 214, 363-368.	3.4	24
34	Roles of furfural during the thermal treatment of bio-oil at low temperatures. Journal of Energy Chemistry, 2020, 50, 85-95.	7.1	24
35	Mass Flow Analysis of Mercury Transformation and Effect of Seawater Flue Gas Desulfurization on Mercury Removal in a Full-Scale Coal-Fired Power Plant. Energy & Fuels, 2017, 31, 11109-11116.	2.5	23
36	Effect of Ni/Al2O3 mixing on the coking behavior of bio-oil during its pyrolysis: Further understanding based on the interaction between its components. Fuel, 2022, 315, 123136.	3.4	23

Long Jiang

#	Article	IF	CITATIONS
37	Effect of temperature on multiple competitive processes for co-production of carbon nanotubes and hydrogen during catalytic reforming of toluene. Fuel, 2020, 264, 116749.	3.4	22
38	Cenosphere Formation during Single-Droplet Combustion of Heavy Fuel Oil. Energy & Fuels, 2019, 33, 1570-1581.	2.5	20
39	Effects of H ₂ O on NO Emission during Oxy-coal Combustion with Wet Recycle. Energy & Fuels, 2017, 31, 8392-8399.	2.5	19
40	Relation between char structures and formation of volatiles during the pyrolysis of Shenfu coal: Further understanding on the effects of mobile phase and fixed phase. Fuel Processing Technology, 2018, 178, 379-385.	3.7	19
41	Study on supercritical CO2 coal-fired boiler based on improved genetic algorithm. Energy Conversion and Management, 2020, 221, 113163.	4.4	18
42	Performance and Carbonation Kinetics of Modified CaO-Based Sorbents Derived from Different Precursors in Multiple CO2 Capture Cycles. Energy & Fuels, 2016, 30, 9563-9571.	2.5	17
43	Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis. Bioresource Technology, 2016, 218, 134-139.	4.8	17
44	Identification of the structural characteristics of the asphaltenes in the tetrahydrofuran-microwave-extracted portions from two Chinese coals. Fuel Processing Technology, 2017, 160, 86-92.	3.7	17
45	The formation mechanism for OPAHs during the cellulose thermal conversion in inert atmosphere at different temperatures based on ESI(â^) FT-ICR MS measurement and density functional theory (DFT). Fuel, 2019, 239, 320-329.	3.4	17
46	Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study. Energy, 2021, 222, 119970.	4.5	17
47	Performance of CaO for phenol steam reforming and water–gas shift reaction impacted by carbonation process. International Journal of Hydrogen Energy, 2015, 40, 13314-13322.	3.8	15
48	Effects of temperature and aspect ratio on heterogeneity of the biochar from pyrolysis of biomass pellet. Fuel Processing Technology, 2022, 235, 107366.	3.7	14
49	Waste tire heat treatment to prepare sulfur self-doped char via pyrolysis and K2FeO4-assisted activation methods. Waste Management, 2021, 125, 145-153.	3.7	12
50	Polymerization during low-temperature electrochemical upgrading of bio-oil: Multi-technique characterization of bio-oil evolution. Energy Conversion and Management, 2022, 253, 115165.	4.4	12
51	Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA. Energy, 2022, 244, 123164.	4.5	12
52	Evolution of coke structures during electrochemical upgrading of bio-oil. Fuel Processing Technology, 2022, 225, 107036.	3.7	11
53	Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000ÂMW supercritical CO2 coal-fired boiler. Energy, 2020, 212, 118735.	4.5	10
54	Importance of char-volatiles interactions during co-pyrolysis of polypropylene and biomass components. Journal of Environmental Chemical Engineering, 2022, 10, 108202.	3.3	10

LONG JIANG

#	Article	IF	CITATIONS
55	Effects of the Gas-/Liquid-Phase Interactions on the Evolution of Bio-oil during Its Thermal Treatment. Energy & Fuels, 2020, 34, 8482-8492.	2.5	9
56	Processes simulation and environmental evaluation of biofuel production via Co-pyrolysis of tropical agricultural waste. Energy, 2022, 242, 123016.	4.5	9
57	Pyrolysis characteristics and kinetic study of coal in a novel concentrating photothermal thermogravimetric analyzer: Effect of heating rate. Fuel, 2022, 322, 124218.	3.4	9
58	Simultaneous removal of NO and Hg0 from flue gas over MnSmCo/Ti catalyst at low temperature. Proceedings of the Combustion Institute, 2021, 38, 5331-5338.	2.4	8
59	Effects of CO2 and H2O on oxy-fuel combustion characteristics and structural evolutions of Zhundong coal pellet at fast heating rate. Fuel, 2021, 294, 120525.	3.4	8
60	An insight into the OPAHs and SPAHs formation mechanisms during alkaline lignin pyrolysis at different temperatures. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105104.	2.6	8
61	Comparative study of catalytic and non-catalytic steam reforming of bio-oil: Importance of pyrolysis temperature and its parent biomass particle size during bio-oil production process. Fuel, 2022, 314, 122746.	3.4	8
62	Hydrogen-Rich Gas Production from Steam Gasification of Lignite Integrated with CO ₂ Capture Using Dual Calcium-Based Catalysts: An Experimental and Catalytic Kinetic Study. Energy & Fuels, 2018, 32, 1265-1275.	2.5	7
63	Coke formation and its impacts during electrochemical upgrading of bio-oil. Fuel, 2021, 306, 121664.	3.4	7
64	Effects of interactions between organic solid waste components on the formation of heavy components in oil during pyrolysis. Fuel Processing Technology, 2022, 225, 107041.	3.7	7
65	Efficiently treating waste nylon-tire to prepare sulfur and nitrogen doped porous carbon material via pyrolysis and activation. Journal of Environmental Chemical Engineering, 2022, 10, 108103.	3.3	7
66	Evolution of Stable Free Radicals during Bio-Oil Pyrolysis and Its Relation to Coke Formation: An in Situ EPR Study. Energy & Fuels, 2022, 36, 7608-7616.	2.5	6
67	The structural characteristics of waste tire chars at different pyrolysis temperatures. IOP Conference Series: Earth and Environmental Science, 2021, 657, 012005.	0.2	4
68	Effects of aspect ratio on char structure during the pyrolysis of sawdust pellet. Fuel, 2022, 325, 124850.	3.4	4
69	H2 produced by catalytic reforming of acetic acid over Ni/char catalyst recycled from the biochar adsorption purification of simulated Ni electroplating wastewater. Fuel, 2022, 328, 125243.	3.4	4
70	Ignition of large size coal in a gas-phase temperature adjustable concentrating photothermal reactor: The influence of volumetric reactions. Fuel Processing Technology, 2021, 213, 106642.	3.7	3
71	Coke formation during the pyrolysis of bio-oil: Further understanding on the evolution of radicals. Applications in Energy and Combustion Science, 2022, 9, 100050.	0.9	3
72	Polymerization during low-temperature electrochemical upgrading of bio-oil: Effects of interactions among bio-oil fractions. Energy, 2022, 251, 123944.	4.5	3

LONG JIANG

#	Article	IF	CITATIONS
73	Roles of inorganic potassium in the evolution of heavy volatile during cellulose steam reforming. Fuel, 2022, 321, 124099.	3.4	3
74	Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes, 2021, 9, 1622.	1.3	1
75	Effects of Parent Coal Properties on the Pyrolytic Char Chemical Structure: Insights from Micro-Raman Spectroscopy Based on 32 Kinds of Chinese Coals. Processes, 2021, 9, 1575.	1.3	1
76	Research on Pyrolysis Characteristics of Cotton Straw. , 2010, , .		0
77	The OPAHs from hemicellulose pyrolysis tar at different temperature characterization via GC-MS and ESI FT-ICR MS. IOP Conference Series: Earth and Environmental Science, 0, 657, 012028.	0.2	0
78	Products characterization for fast in-situ catalytic pyrolysis of bio-oil over Ni/Al2O3. IOP Conference Series: Earth and Environmental Science, 0, 657, 012023.	0.2	0