Konstantin Gavrilov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8692935/publications.pdf Version: 2024-02-01

687363 713466 33 468 13 21 citations h-index g-index papers 33 33 33 320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds. Russian Chemical Reviews, 2004, 73, 671-700.	6.5	86
2	Asymmetric Hydrogenation of αâ€Keto Phosphonates with Chiral Palladium Catalysts. European Journal of Organic Chemistry, 2009, 2009, 510-515.	2.4	59
3	Novel Highly EfficientP-Chiral Ferrocenylimino Diamidophosphite Ligands for Pd-Catalysed Asymmetric Allylation. European Journal of Organic Chemistry, 2005, 2005, 2097-2105.	2.4	35
4	Asymmetric Catalytic Reactions Using <i>P*</i> â€Monoâ€; <i>P*,N</i> ―and <i>P*,P*</i> â€Bidentate Diamidophosphites with BINOL Backbones and 1,3,2â€Diazaphospholidine Moieties: Differences in the Enantioselectivity. Advanced Synthesis and Catalysis, 2010, 352, 2599-2610.	4.3	35
5	Diamidophosphites with remote Pâ^—-stereocentres and their performance in Pd-catalyzed enantioselective reactions. Tetrahedron: Asymmetry, 2014, 25, 1116-1121.	1.8	21
6	P-Chiral 1,7-diphosphanorbornenes: from asymmetric phospha-Diels–Alder reactions towards applications in asymmetric catalysis. Dalton Transactions, 2019, 48, 4677-4684.	3.3	20
7	Palladium catalyzed asymmetric reactions assisted by P*,P*-bidentate bisdiamidophosphites based on 1,4-diols. Tetrahedron, 2017, 73, 461-471.	1.9	18
8	(<i>S</i>)â€6â€Bromoâ€BINOLâ€based phosphoramidite ligand with <i>C</i> ₁ symmetry for enantioselective hydrogenation and allylic substitution. Chirality, 2010, 22, 844-848.	2.6	17
9	Nonsimple relationships between the Pâ^—-chiral diamidophosphite and the arylphosphine moieties in Pd-catalyzed asymmetric reactions: combinatorial approach and P,Pâ^—-bidentate phosphine-diamidophosphites. Tetrahedron, 2014, 70, 616-624.	1.9	17
10	Oxalamide-based bisdiamidophosphites: synthesis, coordination, and application in asymmetric metallocatalysis. Organic Chemistry Frontiers, 2019, 6, 1637-1648.	4.5	17
11	Reactions of chiral phosphoramidites with complexes Pd(COD)Cl2 and Pt(COD)Cl2. Russian Chemical Bulletin, 1998, 47, 1585-1588.	1.5	15
12	Ferrocenyliminophosphites as Easyâ€ŧoâ€Modify Ligands for Asymmetric Catalysis. European Journal of Organic Chemistry, 2007, 2007, 4940-4947.	2.4	15
13	Bulky <i>P*</i> hirogenic Diazaphospholidines as Monodentate Ligands for Asymmetric Catalysis. European Journal of Organic Chemistry, 2009, 2009, 3923-3929.	2.4	13
14	NOBIN-based chiral phosphite-type ligands and their application in asymmetric catalysis. Tetrahedron Letters, 2015, 56, 4756-4761.	1.4	13
15	(S)-2-[(N-arylamino)methyl]pyrrolidines-Based PhosphoramiditeP,N-Ligand Library for Asymmetric Metal-Catalyzed Allylic Substitution and Conjugate 1,4-Addition. ChemistrySelect, 2016, 1, 4173-4186.	1.5	12
16	Tartaric acid-derived chiral phosphite-type P,N-ligands: behavioural features in Pd-catalyzed asymmetric transformations. Tetrahedron: Asymmetry, 2017, 28, 1633-1643.	1.8	9
17	First P*,S-bidentate diamidophosphite ligand in Pd-catalyzed asymmetric reactions. Mendeleev Communications, 2020, 30, 31-33.	1.6	9
18	Diamidophosphites from β-hydroxyamides: readily assembled ligands for Pd-catalyzed asymmetric allylic substitution. Dalton Transactions, 2020, 49, 5625-5635.	3.3	7

#	Article	IF	CITATIONS
19	Formation of Allylpalladium Complexes and Asymmetric Allylation Involving Modular Bridging Diamidophosphite-Sulfides Based on 1,4-Thioether Alcohols. Organometallics, 2021, 40, 3645-3658.	2.3	7
20	Chiral amido- and diamidophosphites with a peripheral pyridine ring in Pd-catalyzed asymmetric allylation. Russian Chemical Bulletin, 2016, 65, 2278-2285.	1.5	6
21	Pd-Catalyzed asymmetric allylation involving bis(diamidophosphite) based on the salen-type chiral diamine. Russian Chemical Bulletin, 2021, 70, 336-339.	1.5	6
22	Phosphorylated (S)-tert-leucinol isophthalic diamide as a ligand for Pd-catalyzed asymmetric allylic substitution. Russian Chemical Bulletin, 2014, 63, 2635-2640.	1.5	5
23	Diamidophosphite based on (1R,2R)-1,2-bis(3-hydroxybenzamido)cyclohexane in Pd-catalyzed enantioselective allylation. Russian Chemical Bulletin, 2016, 65, 680-684.	1.5	4
24	Bisdiamidophosphite with a bisoxazoline moiety in palladium-catalyzed enantioselective allylation. Russian Chemical Bulletin, 2019, 68, 1376-1379.	1.5	4
25	Diastereomeric bisamidophosphites based on oxalamide 1,3-diol in asymmetric metal complex catalysis. Russian Chemical Bulletin, 2018, 67, 1376-1382.	1.5	3
26	Novel BIPHEN H2 based P,S-bidentate phosphoramidite ligand in palladium-catalyzed asymmetric allylation. Mendeleev Communications, 2021, 31, 651-653.	1.6	3
27	Diverse "roof shaped―chiral diamidophosphites: palladium coordination and catalytic applications. New Journal of Chemistry, 2022, 46, 1751-1762.	2.8	3
28	Palladium and rhodium-catalyzed enantioselective reactions mediated by pseudodipeptide-based phosphite-type ligand. Russian Chemical Bulletin, 2018, 67, 916-922.	1.5	2
29	Diastereomeric Pâ^—,N,S-tridentate diamidophosphites with a ferrocene moiety in asymmetric palladium catalysis. Journal of Organometallic Chemistry, 2020, 913, 121199.	1.8	2
30	Chiral <i>P*,S</i> -bidentate diamidophosphites with 1,2-thioether alcohol–based exocyclic substituents in asymmetric Pd-catalyzed reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 518-519.	1.6	2
31	Chiral inducers with (1R,2R)-1,2-diaminocyclohexane core for organo- and metallocatalysis. Mendeleev Communications, 2019, 29, 35-37.	1.6	1
32	Novel chiral diamidophosphites for asymmetric metal-catalyzed reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 455-456.	1.6	1
33	Novel 1,3,2-diazaphospholidines with pseudodipeptide substituents. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 493-496.	1.6	1