MaÅ,gorzata Janicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8692888/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	NO and H2O2 crosstalk in plant adaptation to stress condition. , 2022, , 689-706.		1
2	Nitrate reductase dependent synthesis of NO in plants. , 2022, , 95-110.		3
3	Antisense oligonucleotide technology as a research tool in plant biology. Functional Plant Biology, 2021, 49, 1-12.	2.1	4
4	The role of NO in plant response to salt stress: interactions with polyamines. Functional Plant Biology, 2020, 47, 865.	2.1	20
5	Interaction between the signaling molecules hydrogen sulfide and hydrogen peroxide and their role in vacuolar H ⁺ â€ATPase regulation in cadmiumâ€stressed cucumber roots. Physiologia Plantarum, 2019, 166, 688-704.	5.2	49
6	Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide. , 2019, , 201-219.		2
7	Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses. Methods in Molecular Biology, 2018, 1696, 205-215.	0.9	10
8	Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Science, 2018, 267, 55-64.	3.6	34
9	Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Functional Plant Biology, 2018, 45, 428.	2.1	34
10	The role of brassinosteroids in the regulation of the plasma membrane H + -ATPase and NADPH oxidase under cadmium stress. Plant Science, 2017, 264, 37-47.	3.6	31
11	Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Science, 2015, 234, 50-59.	3.6	54
12	Transcriptional regulation of the Vâ€ <scp>ATPase</scp> subunit c and Vâ€ <scp>PPase</scp> isoforms in <i>Cucumis sativus</i> under heavy metal stress. Physiologia Plantarum, 2014, 150, 32-45.	5.2	27
13	Mechanism of Cd and Cu action on the tonoplast proton pumps in cucumber roots. Physiologia Plantarum, 2013, 147, 207-217.	5.2	19
14	Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. Journal of Plant Physiology, 2013, 170, 915-922.	3.5	54
15	Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. Journal of Experimental Botany, 2012, 63, 4133-4142.	4.8	116
16	Abscisic acid and hydrogen peroxide induce modification of plasma membrane H+-ATPase from Cucumis sativus L. roots under heat shock. Journal of Plant Physiology, 2012, 169, 1607-1614.	3.5	26
17	Response of plasma membrane H+-ATPase to low temperature in cucumber roots. Journal of Plant Research, 2012, 125, 291-300.	2.4	58
18	Na ⁺ /H ⁺ antiport activity in plasma membrane and tonoplast vesicles isolated from NaCl-treated cucumber roots. Biologia Plantarum, 2012, 56, 377-382.	1.9	9

MaÅ,gorzata Janicka

#	Article	IF	CITATIONS
19	Differential regulation of vacuolar H+-ATPase and H+-PPase in Cucumis sativus roots by zinc and nickel. Plant Science, 2011, 180, 531-539.	3.6	15
20	The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. Journal of Plant Physiology, 2010, 167, 261-269.	3.5	56
21	Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. Journal of Plant Physiology, 2010, 167, 1328-1335.	3.5	29
22	Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. Journal of Plant Physiology, 2008, 165, 278-288.	3.5	60
23	Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. Journal of Experimental Botany, 2008, 59, 3721-3728.	4.8	175
24	Modification of plasma membrane and vacuolar H+-ATPases in response to NaCL and ABA. Journal of Plant Physiology, 2007, 164, 295-302.	3.5	76
25	Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. Physiologia Plantarum, 2004, 121, 84-92.	5.2	46
26	Nitrate transport across the tonoplast ofCucumis sativus L. root cells. Journal of Plant Physiology, 2003, 160, 523-530.	3.5	4