Mark Zanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8692832/publications.pdf

Version: 2024-02-01

430874 330143 2,748 38 18 37 h-index citations g-index papers 38 38 38 5368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Subtype H3N2 Influenza A Viruses: An Unmet Challenge in the Western Pacific. Vaccines, 2022, 10, 112.	4.4	6
2	Diagnostic performance and clinical feasibility of a novel one-step RT-qPCR assay for simultaneous detection of multiple severe acute respiratory syndrome coronaviruses. Archives of Virology, 2022, 167, 871.	2.1	0
3	Severe acute respiratory syndrome coronavirus 2 and influenza A virus coâ€infection alters viral tropism and haematological composition in Syrian hamsters. Transboundary and Emerging Diseases, 2022, 69, .	3.0	7
4	Human postâ€infection serological response to the spike and nucleocapsid proteins of SARSâ€CoVâ€2. Influenza and Other Respiratory Viruses, 2021, 15, 7-12.	3.4	4
5	Addendum: Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, 2021, 12, 826.	12.8	3
6	Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses, 2021, 13, 624.	3.3	29
7	Activated CD4+ TÂcells and CD14hiCD16+ monocytes correlate with antibody response following influenza virus infection in humans. Cell Reports Medicine, 2021, 2, 100237.	6.5	4
8	Antibody Responsiveness to Influenza: What Drives It?. Viruses, 2021, 13, 1400.	3.3	5
9	Seroprevalence of Antibodies to SARS-CoV-2 in Guangdong Province, China between March to June 2020. Pathogens, 2021, 10, 1505.	2.8	1
10	Serosurvey of SARS-CoV-2 among hospital visitors in China. Cell Research, 2020, 30, 817-818.	12.0	11
11	Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, 2020, 11, 3543.	12.8	198
12	The public health response to the COVID-19 outbreak in mainland China: a narrative review. Journal of Thoracic Disease, 2020, 12, 4434-4449.	1.4	25
13	SARSâ€CoVâ€2 environmental contamination associated with persistently infected COVIDâ€19 patients. Influenza and Other Respiratory Viruses, 2020, 14, 688-699.	3.4	65
14	Histone Deacetylase 6 Knockout Mice Exhibit Higher Susceptibility to Influenza A Virus Infection. Viruses, 2020, 12, 728.	3.3	10
15	Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. Journal of Thoracic Disease, 2020, 12, 165-174.	1.4	1,128
16	Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non-epicentre): a nationwide analysis of China. European Respiratory Journal, 2020, 55, 2000562.	6.7	261
17	The tree shrew is a promising model for the study of influenza B virus infection. Virology Journal, 2019, 16, 77.	3.4	10
18	The tree shrew as a model for infectious diseases research. Journal of Thoracic Disease, 2018, 10, S2272-S2279.	1.4	21

#	Article	IF	CITATIONS
19	Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF- $\hat{\mathbb{P}}$ B signaling pathway in Influenza A virus-infected cells. Journal of Ethnopharmacology, 2017, 199, 60-67.	4.1	60
20	The immune correlates of protection for an avian influenza H5N1 vaccine in the ferret model using oil-in-water adjuvants. Scientific Reports, 2017, 7, 44727.	3.3	19
21	Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11217-11222.	7.1	24
22	H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines. Npj Vaccines, 2017, 2, 16.	6.0	12
23	An Amino Acid in the Stalk Domain of N1 Neuraminidase Is Critical for Enzymatic Activity. Journal of Virology, 2017, 91, .	3.4	18
24	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	3.4	14
25	G45R on nonstructural protein 1 of influenza A virus contributes to virulence by increasing the expression of proinflammatory cytokines in mice. Archives of Virology, 2017, 162, 45-55.	2.1	3
26	G45R mutation in the nonstructural protein 1 of A/Puerto Rico/8/1934 (H1N1) enhances viral replication independent of dsRNA-binding activity and type I interferon biology. Virology Journal, 2016, 13, 127.	3.4	4
27	Live-attenuated H7N9 influenza vaccine is weak, yet strong. Lancet Infectious Diseases, The, 2016, 16, 266-267.	9.1	1
28	The Interaction between Respiratory Pathogens and Mucus. Cell Host and Microbe, 2016, 19, 159-168.	11.0	221
29	Induction of Microglia Activation after Infection with the Non-Neurotropic A/CA/04/2009 H1N1 Influenza Virus. PLoS ONE, 2015, 10, e0124047.	2.5	77
30	An Anti-H5N1 Influenza Virus FcDART Antibody Is a Highly Efficacious Therapeutic Agent and Prophylactic against H5N1 Influenza Virus Infection. Journal of Virology, 2015, 89, 4549-4561.	3.4	11
31	Impact of Adjuvants on the Immunogenicity and Efficacy of Split-Virion H7N9 Vaccine in Ferrets. Journal of Infectious Diseases, 2015, 212, 542-551.	4.0	19
32	Possible basis for the emergence of H1N1 viruses with pandemic potential from avian hosts. Emerging Microbes and Infections, 2015, 4, 1-10.	6.5	14
33	Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus. Journal of Virology, 2015, 89, 5935-5948.	3.4	36
34	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
35	Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site. Virology, 2014, 468-470, 72-80.	2.4	14
36	Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nature Communications, 2011, 2, 491.	12.8	72

#	Article	IF	CITATIONS
37	Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity. PLoS ONE, 2010, 5, e12309.	2.5	147
38	N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance. PLoS Medicine, 2007, 4, e335.	8.4	151