Ana Catarina Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8692636/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chemical Reviews, 2018, 118, 8598-8654.	23.0	112
2	Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genetics in Medicine, 2018, 20, 591-598.	1.1	86
3	Familial hypercholesterolaemia in Portugal. Atherosclerosis, 2008, 196, 633-642.	0.4	81
4	Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Human Molecular Genetics, 2014, 23, 1817-1828.	1.4	72
5	How good is controlled attenuation parameter and fatty liver index for assessing liver steatosis in general population: correlation with ultrasound. Liver International, 2014, 34, e111-7.	1.9	70
6	Mutational analysis and genotype-phenotype relation in familial hypercholesterolemia: The SAFEHEART registry. Atherosclerosis, 2017, 262, 8-13.	0.4	60
7	Update of the Portuguese Familial Hypercholesterolaemia Study. Atherosclerosis, 2010, 212, 553-558.	0.4	48
8	Lysosomal acid lipase deficiency: A hidden disease among cohorts of familial hypercholesterolemia?. Journal of Clinical Lipidology, 2017, 11, 477-484.e2.	0.6	42
9	Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations. Journal of Medical Genetics, 2009, 46, 352-357.	1.5	41
10	Low-density lipoprotein receptor mutational analysis in diagnosis of familial hypercholesterolemia. Current Opinion in Lipidology, 2017, 28, 120-129.	1.2	39
11	The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genetics in Medicine, 2015, 17, 980-988.	1.1	35
12	Advantages and Versatility of Fluorescence-Based Methodology to Characterize the Functionality of LDLR and Class Mutation Assignment. PLoS ONE, 2014, 9, e112677.	1.1	33
13	Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity. Scientific Reports, 2015, 5, 18184.	1.6	33
14	Mutational analysis of a cohort with clinical diagnosis of familial hypercholesterolemia: considerations for genetic diagnosis improvement. Genetics in Medicine, 2016, 18, 316-324.	1.1	33
15	Characterization of the First PCSK9 Gain of Function Homozygote. Journal of the American College of Cardiology, 2015, 66, 2152-2154.	1.2	30
16	<p>Metabolic Dysfunction and Asthma: Current Perspectives</p> . Journal of Asthma and Allergy, 2020, Volume 13, 237-247.	1.5	24
17	Clinical and molecular aspects of familial hypercholesterolemia in Ibero-American countries. Journal of Clinical Lipidology, 2017, 11, 160-166.	0.6	23
18	Further evidence of novel APOB mutations as a cause of familial hypercholesterolaemia. Atherosclerosis, 2018, 277, 448-456.	0.4	23

ANA CATARINA ALVES

#	Article	IF	CITATIONS
19	Cardiovascular risk assessment of dyslipidemic children: analysis of biomarkers to identify monogenic dyslipidemia. Journal of Lipid Research, 2014, 55, 947-955.	2.0	22
20	The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. Clinical Genetics, 2020, 97, 457-466.	1.0	22
21	InÂvitro functional characterization of missense mutations in the LDLR gene. Atherosclerosis, 2012, 225, 128-134.	0.4	21
22	Hepatitis B and C prevalence in Portugal: disparity between the general population and high-risk groups. European Journal of Gastroenterology and Hepatology, 2016, 28, 640-644.	0.8	20
23	Molecular diagnosis of familial hypercholesterolemia: an important tool for cardiovascular risk stratification. Revista Portuguesa De Cardiologia, 2010, 29, 907-21.	0.2	16
24	Phenotypical, Clinical, and Molecular Aspects of Adults and Children With Homozygous Familial Hypercholesterolemia in Iberoamerica. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2508-2515.	1.1	15
25	No Evidence for Lower Levels of Serum Vitamin D in the Presence of Hepatic Steatosis. A Study on the Portuguese General Population. International Journal of Medical Sciences, 2018, 15, 1778-1786.	1.1	12
26	LDLR variants functional characterization: Contribution to variant classification. Atherosclerosis, 2021, 329, 14-21.	0.4	11
27	Functional profiling of LDLR variants: Important evidence for variant classification. Journal of Clinical Lipidology, 2022, 16, 516-524.	0.6	8
28	Prevalence and risk factors of fatty liver in Portuguese adults. European Journal of Clinical Investigation, 2020, 50, e13235.	1.7	7
29	Cardiovascular risk profile of high school students: A cross-sectional study. Revista Portuguesa De Cardiologia, 2014, 33, 525-534.	0.2	6
30	What Is the Role of the New Index Relative Fat Mass (RFM) in the Assessment of Nonalcoholic Fatty Liver Disease (NAFLD)?. Obesity Surgery, 2020, 30, 560-568.	1.1	6
31	Aplicabilidade da fórmula Martinâ€Hopkins e comparação com a fórmula Friedewald na estimativa do colesterol LDL na população do estudo e_COR. Revista Portuguesa De Cardiologia, 2021, 40, 715-724.	0.2	6
32	Hipercolesterolemia – uma patologia com expressão desde a idade pediátrica. Revista Portuguesa De Cardiologia, 2013, 32, 379-386.	0.2	5
33	Characterization of Two Variants at Met 1 of the Human LDLR Gene Encoding the Same Amino Acid but Causing Different Functional Phenotypes. Biomedicines, 2021, 9, 1219.	1.4	5
34	Performance comparison of different classification algorithms applied to the diagnosis of familial hypercholesterolemia in paediatric subjects. Scientific Reports, 2022, 12, 1164.	1.6	5
35	Comparative study on the performance of different classification algorithms, combined with pre- and post-processing techniques to handle imbalanced data, in the diagnosis of adult patients with familial hypercholesterolemia. PLoS ONE, 2022, 17, e0269713.	1.1	4
36	Hypercholesterolemia – A disease with expression since childhood. Revista Portuguesa De Cardiologia (English Edition), 2013, 32, 379-386.	0.2	3

IF

CITATIONS

ARTICLE

Familial hypercholesterolemia. , 2021, , 323-348.