List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8692390/publications.pdf Version: 2024-02-01

P KEITH REEVES

#	Article	IF	CITATIONS
1	Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Frontiers in Immunology, 2022, 13, 858383.	2.2	3
2	SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nature Communications, 2021, 12, 1282.	5.8	24
3	TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics?. Aids, 2021, 35, 165-176.	1.0	4
4	Systemic and mucosal mobilization of granulocyte subsets during lentiviral infection. Immunology, 2021, 164, 348-357.	2.0	3
5	Probiotic supplementation reduces inflammatory profiles but does not prevent oral immune perturbations during SIV infection. Scientific Reports, 2021, 11, 14507.	1.6	5
6	Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection. JCI Insight, 2021, 6, .	2.3	8
7	Functional Perturbation of Mucosal Group 3 Innate Lymphoid and Natural Killer Cells in Simian-Human Immunodeficiency Virus/Simian Immunodeficiency Virus-Infected Infant Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	6
8	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	13.7	765
9	Characterization of Rhesus Macaque Liver-Resident CD49a+ NK Cells During Retrovirus Infections. Frontiers in Immunology, 2020, 11, 1676.	2.2	3
10	Skipped Over: Tuning Natural Killer Cells Toward HIV Through Alternative Splicing. AIDS Research and Human Retroviruses, 2020, 36, 969-972.	0.5	0
11	Friends or foes? The knowns and unknowns of natural killer cell biology in COVID-19 and other coronaviruses in July 2020. PLoS Pathogens, 2020, 16, e1008820.	2.1	21
12	Delineation and Modulation of the Natural Killer Cell Transcriptome in Rhesus Macaques During ZIKV and SIV Infections. Frontiers in Cellular and Infection Microbiology, 2020, 10, 194.	1.8	3
13	Silent damage? Occult HCV replication and histological disease may occur following apparent HCV clearance. EBioMedicine, 2019, 47, 12-13.	2.7	2
14	A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Frontiers in Immunology, 2019, 10, 1850.	2.2	21
15	Simian Immunodeficiency Virus Infection Modulates CD94 ⁺ (KLRD1 ⁺) NK Cells in Rhesus Macaques. Journal of Virology, 2019, 93, .	1.5	16
16	Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Frontiers in Immunology, 2019, 10, 1124.	2.2	21
17	Semaphorin 7A modulates cytokineâ€induced memoryâ€like responses by human natural killer cells. European Journal of Immunology, 2019, 49, 1153-1166.	1.6	30
18	Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Frontiers in Immunology, 2019, 10, 1025.	2.2	37

#	Article	IF	CITATIONS
19	Adaptive NK cell responses in HIV/SIV infections: A roadmap to cell-based therapeutics?. Journal of Leukocyte Biology, 2019, 105, 1253-1259.	1.5	15
20	Impact of CMV Infection on Natural Killer Cell Clonal Repertoire in CMV-NaÃ⁻ve Rhesus Macaques. Frontiers in Immunology, 2019, 10, 2381.	2.2	16
21	Non-linear multidimensional flow cytometry analyses delineate NK cell phenotypes in normal and HIV-infected chimpanzees. International Immunology, 2019, 31, 175-180.	1.8	0
22	Short Communication: Apoptotic Membrane Microparticles Quantified by Fluorescent Bead-Based Assay Are Elevated in HIV and SIV Infections. AIDS Research and Human Retroviruses, 2018, 34, 446-448.	0.5	1
23	Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2018, 92, .	1.5	7
24	Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Frontiers in Immunology, 2018, 9, 2862.	2.2	11
25	CMV Primes Functional Alternative Signaling in Adaptive Δg NK Cells but Is Subverted by Lentivirus Infection in Rhesus Macaques. Cell Reports, 2018, 25, 2766-2774.e3.	2.9	32
26	Hallmarks of primate lentiviral immunodeficiency infection recapitulate loss of innate lymphoid cells. Nature Communications, 2018, 9, 3967.	5.8	25
27	Indirect activation of rhesus macaque (<i>Macaca mulatta</i>) <scp>NK</scp> cells in oral and mucosal draining lymph nodes. Journal of Medical Primatology, 2018, 47, 302-304.	0.3	1
28	Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques. PLoS Pathogens, 2018, 14, e1007104.	2.1	46
29	Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Frontiers in Immunology, 2018, 9, 780.	2.2	29
30	Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. Aids, 2018, 32, 1571-1578.	1.0	10
31	Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Scientific Reports, 2018, 8, 7227.	1.6	110
32	Intestinal damage precedes mucosal immune dysfunction in SIV infection. Mucosal Immunology, 2018, 11, 1429-1440.	2.7	46
33	Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nature Medicine, 2017, 23, 1277-1286.	15.2	107
34	Hepatic immunopathology during occult hepacivirus re-infection. Virology, 2017, 512, 48-55.	1.1	7
35	Redefining Memory: Building the Case for Adaptive NK Cells. Journal of Virology, 2017, 91, .	1.5	89
36	Innate Lymphoid Cells in HIV/SIV Infections. Frontiers in Immunology, 2017, 8, 1818.	2.2	17

#	Article	IF	CITATIONS
37	A mouse model for hepatitis C virus infection: are we there yet?. Annals of Infection, 2017, 1, 1-1.	0.0	0
38	Metabolic Dysregulation in Hepacivirus Infection of Common Marmosets (Callithrix jacchus). PLoS ONE, 2017, 12, e0170240.	1.1	5
39	Acute Liver Damage Associated with Innate Immune Activation in a Small Nonhuman Primate Model of Hepacivirus Infection. Journal of Virology, 2016, 90, 9153-9162.	1.5	16
40	Enhancement of Microbiota in Healthy Macaques Results in Beneficial Modulation of Mucosal and Systemic Immune Function. Journal of Immunology, 2016, 196, 2401-2409.	0.4	48
41	Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2016, 90, 4981-4989.	1.5	79
42	SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage. Journal of Infectious Diseases, 2016, 213, 361-369.	1.9	29
43	Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection. PLoS Pathogens, 2016, 12, e1006104.	2.1	21
44	Accumulation of Cytotoxic CD16 ⁺ NK Cells in Simian Immunodeficiency Virus-Infected Lymph Nodes Associated with <i>In Situ</i> Differentiation and Functional Anergy. Journal of Virology, 2015, 89, 6887-6894.	1.5	56
45	Characterization of CD8+ T Cell Differentiation following SIVΔnef Vaccination by Transcription Factor Expression Profiling. PLoS Pathogens, 2015, 11, e1004740.	2.1	13
46	CD8 T Cell Response Maturation Defined by Anentropic Specificity and Repertoire Depth Correlates with SIVI"nef-induced Protection. PLoS Pathogens, 2015, 11, e1004633.	2.1	19
47	Antigen-specific NK cell memory in rhesus macaques. Nature Immunology, 2015, 16, 927-932.	7.0	269
48	Bone Marrow–Imprinted Gut-Homing of Plasmacytoid Dendritic Cells (pDCs) in Acute Simian Immunodeficiency Virus Infection Results in Massive Accumulation of Hyperfunctional CD4+pDCs in the Mucosae. Journal of Infectious Diseases, 2015, 211, 1717-1725.	1.9	11
49	NK cell exhaustion: bad news for chronic disease?. Oncotarget, 2015, 6, 21797-21798.	0.8	17
50	Short Communication: Plasmacytoid Dendritic Cells from HIV-1 Elite Controllers Maintain a Gut-Homing Phenotype Associated with Immune Activation. AIDS Research and Human Retroviruses, 2014, 30, 1213-1215.	0.5	10
51	Hypercytotoxicity and Rapid Loss of NKp44+ Innate Lymphoid Cells during Acute SIV Infection. PLoS Pathogens, 2014, 10, e1004551.	2.1	58
52	Depletion of Lamina Propria Innate Lymphoid Cells in Simian Immunodeficiency Virus Infection. AIDS Research and Human Retroviruses, 2014, 30, 1160-1161.	0.5	2
53	Rapid Loss of Th17 Cells after SIV Infection May Underlie Mucosal Dysfunction. AIDS Research and Human Retroviruses, 2014, 30, A48-A48.	0.5	0
54	Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Frontiers in Microbiology, 2014, 5, 690.	1.5	17

#	Article	IF	CITATIONS
55	SIV- and Vaccine-elicited NK Cell Memory in Rhesus Macaques. AIDS Research and Human Retroviruses, 2014, 30, A14-A14.	0.5	Ο
56	Transcriptional profiling of peripheral CD8+T cell responses to SIVΔnef and SIVmac251 challenge reveals a link between protective immunity and induction of systemic immunoregulatory mechanisms. Virology, 2014, 468-470, 581-591.	1.1	4
57	NK Cell Responses to Simian Immunodeficiency Virus Vaginal Exposure in Naive and Vaccinated Rhesus Macaques. Journal of Immunology, 2014, 193, 277-284.	0.4	19
58	Live Simian Immunodeficiency Virus Vaccine Correlate of Protection: Local Antibody Production and Concentration on the Path of Virus Entry. Journal of Immunology, 2014, 193, 3113-3125.	0.4	64
59	Multiâ€functional plasmacytoid dendritic cells redistribute to gut tissues during simian immunodeficiency virus infection. Immunology, 2013, 140, 244-249.	2.0	18
60	Loss of bone marrow <scp>NK</scp> cells during <scp>SIV</scp> infection is associated with increased turnover rates and cytotoxicity but not changes in trafficking. Journal of Medical Primatology, 2013, 42, 230-236.	0.3	1
61	Characterization of Circulating Natural Killer Cells in Neotropical Primates. PLoS ONE, 2013, 8, e78793.	1.1	18
62	Location and Dynamics of the Immunodominant CD8 T Cell Response to SIVΔnef Immunization and SIVmac251 Vaginal Challenge. PLoS ONE, 2013, 8, e81623.	1.1	21
63	SIV Infection Induces Accumulation of Plasmacytoid Dendritic Cells in the Gut Mucosa. Journal of Infectious Diseases, 2012, 206, 1462-1468.	1.9	66
64	Functional perturbation of classical natural killer and innate lymphoid cells in the oral mucosa during SIV infection. Frontiers in Immunology, 2012, 3, 417.	2.2	28
65	Gut inflammation and indoleamine deoxygenase inhibit IL-17 production and promote cytotoxic potential in NKp44+ mucosal NK cells during SIV infection. Blood, 2011, 118, 3321-3330.	0.6	97
66	Quantification of mucosal mononuclear cells in tissues with a fluorescent bead-based polychromatic flow cytometry assay. Journal of Immunological Methods, 2011, 367, 95-98.	0.6	7
67	Potential confusion of contaminating CD16 ⁺ myeloid DCs with anergic CD16 ⁺ NK cells in chimpanzees. European Journal of Immunology, 2011, 41, 1070-1074.	1.6	5
68	CD16â^' natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood, 2010, 115, 4439-4446.	0.6	114
69	Mobilization of CD34 + Progenitor Cells in Association with Decreased Proliferation in the Bone Marrow of Macaques after Administration of the Fms-Like Tyrosine Kinase 3 Ligand. Vaccine Journal, 2010, 17, 1269-1273.	3.2	5
70	Simian Immunodeficiency Virus Infection Induces Expansion of α4β7 ⁺ and Cytotoxic CD56 ⁺ NK Cells. Journal of Virology, 2010, 84, 8959-8963.	1.5	51
71	Systemic Dendritic Cell Mobilization Associated with Administration of FLT3 Ligand to SIV- and SHIV-Infected Macaques. AIDS Research and Human Retroviruses, 2009, 25, 1313-1328.	0.5	10
72	Characterization of Plasmacytoid Dendritic Cells in Bone Marrow of Pig-Tailed Macaques. Vaccine Journal, 2008, 15, 35-41.	3.2	11

#	Article	IF	CITATIONS
73	Disparate effects of acute and chronic infection with SIVmac239 or SHIV-89.6P on macaque plasmacytoid dendritic cells. Virology, 2007, 365, 356-368.	1.1	37