
Javier Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8691712/publications.pdf Version: 2024-02-01

INVIED DINTO

#	Article	IF	CITATIONS
1	Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer, 2015, 56, 57-67.	1.8	212
2	Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016, 78-79, 93-139.	16.0	153
3	Characterization of the cellular structure based on user-interactive image analysis procedures. Journal of Cellular Plastics, 2013, 49, 555-575.	1.2	137
4	Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer, 2015, 63, 116-126.	1.8	120
5	Nanocellular CO2 foaming of PMMA assisted by block copolymer nanostructuration. Chemical Engineering Journal, 2014, 243, 428-435.	6.6	80
6	Surface modification of polymeric foams for oil spills remediation. Journal of Environmental Management, 2018, 206, 872-889.	3.8	77
7	Effect of the porous structure of polymer foams on the remediation of oil spills. Journal Physics D: Applied Physics, 2016, 49, 145601.	1.3	63
8	Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. Journal of Supercritical Fluids, 2014, 94, 198-205.	1.6	55
9	Spent Coffee Bioelastomeric Composite Foams for the Removal of Pb ²⁺ and Hg ²⁺ from Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 5495-5502.	3.2	50
10	Lowâ€Đensity Nanocellular Foams Produced by Highâ€Pressure Carbon Dioxide. Macromolecular Materials and Engineering, 2011, 296, 752-759.	1.7	46
11	Block Copolymers Self-Assembly Allows Obtaining Tunable Micro or Nanoporous Membranes or Depth Filters Based on PMMA; Fabrication Method and Nanostructures. Journal of Physical Chemistry C, 2014, 118, 4656-4663.	1.5	38
12	Antibacterial Melamine Foams Decorated with <i>in Situ</i> Synthesized Silver Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 16095-16104.	4.0	35
13	Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures. Polymer, 2019, 160, 126-137.	1.8	33
14	Molecular confinement of solid and gaseous phases of self-standing bulk nanoporous polymers inducing enhanced and unexpected physical properties. Polymer, 2017, 113, 27-33.	1.8	32
15	Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer, 2016, 107, 302-305.	1.8	30
16	Nanoporous PMMA: A novel system with different acoustic properties. Materials Letters, 2016, 168, 76-79.	1.3	29
17	Nanoporous PMMA foams with templated pore size obtained by localized in situ synthesis of nanoparticles and CO2 foaming. Polymer, 2017, 124, 176-185.	1.8	29
18	Enhanced oil removal from water in oil stable emulsions using electrospun nanocomposite fiber mats. RSC Advances, 2018, 8, 7641-7650.	1.7	28

Javier Pinto

#	Article	IF	CITATIONS
19	Application of a microfocus X-ray imaging apparatus to the study of cellular polymers. Polymer Testing, 2013, 32, 321-329.	2.3	26
20	Oil removal from water–oil emulsions using magnetic nanocomposite fibrous mats. RSC Advances, 2016, 6, 71100-71107.	1.7	26
21	Low-density PMMA/MAM nanocellular polymers using low MAM contents: Production and characterization. Polymer, 2019, 163, 115-124.	1.8	26
22	Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers. Polymer, 2018, 153, 262-270.	1.8	25
23	Facile Oil Removal from Water-in-Oil Stable Emulsions Using PU Foams. Materials, 2018, 11, 2382.	1.3	20
24	Enhanced nitrates-polluted water remediation by polyurethane/sepiolite cellular nanocomposites. Journal of Cleaner Production, 2020, 254, 120038.	4.6	20
25	Reusable nanocomposite-coated polyurethane foams for the remediation of oil spills. International Journal of Environmental Science and Technology, 2017, 14, 2055-2066.	1.8	19
26	Block Copolymer-Assisted Microcellular Supercritical CO2 Foaming of Polymers and Blends. Frontiers in Forests and Global Change, 2012, 31, 207-222.	0.6	17
27	On the interaction of infrared radiation and nanocellular polymers: First experimental determination of the extinction coefficient. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124937.	2.3	15
28	A new generation of hollow polymeric microfibers produced by gas dissolution foaming. Journal of Materials Chemistry B, 2020, 8, 8820-8829.	2.9	14
29	Solid Skin Characterization of PMMA/MAM Foams Fabricated by Gas Dissolution Foaming over a Range of Pressures. Defect and Diffusion Forum, 2012, 326-328, 434-439.	0.4	10
30	Advanced Nanocellular Foams: Perspectives on the Current Knowledge and Challenges. Nanomaterials, 2021, 11, 621.	1.9	10
31	Improving the extensional rheological properties and foamability of high-density polyethylene by means of chemical crosslinking. Journal of Cellular Plastics, 2018, 54, 333-357.	1.2	8
32	Analysis of the retrograde behavior in PMMA-CO2 systems by measuring the (effective) glass transition temperature using refractive index variations. Journal of Supercritical Fluids, 2021, 170, 105159.	1.6	7
33	A novel route to produce structural polymer foams with a controlled solid skin-porous core structure based on gas diffusion mechanisms. Journal of Sandwich Structures and Materials, 2020, 22, 822-832.	2.0	6
34	Transport Properties of One-Step Compression Molded Epoxy Nanocomposite Foams. Polymers, 2019, 11, 756.	2.0	5
35	Non-Invasive Approaches for the Evaluation of the Functionalization of Melamine Foams with In-Situ Synthesized Silver Nanoparticles. Polymers, 2020, 12, 996.	2.0	5
36	Investigating glass beads and the funerary rituals of ancient Vaccaei culture (S. IVâ€I BC) by Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 170-185.	1.2	5

Javier Pinto

#	ARTICLE	IF	CITATIONS
37	Production of cellular polymers without solid outer skins by gas dissolution foaming: A long-sought step towards new applications. Materials and Design, 2022, 217, 110648.	3.3	5
38	Sub-pixel Tomographic Methods for Characterizing the Solid Architecture of Foams. Microscopy and Microanalysis, 2022, 28, 689-700.	0.2	4
39	Melamine Foams Decorated with In-Situ Synthesized Gold and Palladium Nanoparticles. Polymers, 2020, 12, 934.	2.0	3
40	Nanoporous polymer foams from nanostructured polymer blends. , 2017, , 237-288.		2
41	Microcellular foams production from nanocomposites based on PS using MOF nanoparticles with enhanced CO ₂ properties as nucleating agent. Journal of Cellular Plastics, 0, , 0021955X2210875.	1.2	2
42	Nanostructure of PMMA/MAM Blends Prepared by Out-of-Equilibrium (Extrusion) and Near-Equilibrium (Casting) Self-Assembly and Their Nanocellular or Microcellular Structure Obtained from CO2 Foaming. Nanomaterials, 2021, 11, 2834.	1.9	1
43	<i>In Situ</i> Optical Analysis of Structural Changes in Polylactic Acid (PLA) during the Gas Dissolution Process. Defect and Diffusion Forum, 2014, 353, 131-136.	0.4	0
44	Enhancement of Carbon Nanofibers Dispersion on Epoxy Resin Foams Leading to Remarkable Electrical Conductivity Improvement. Frontiers in Forests and Global Change, 2016, 35, 217-234.	0.6	0
45	Archaeometric Study of Pictorial Stratigraphies from a Togatus Roman Sculpture found in Salamanca (Spain). Zephyrus, 0, 88, 193-207.	0.5	0