
Dong Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8691533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental, 2022, 300, 120719.	20.2	25
2	In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate. Physical Chemistry Chemical Physics, 2022, 24, 2901-2908.	2.8	1
3	The mechanism of sugar produced from simple glycolaldehyde derivative at ambient conditions. International Journal of Quantum Chemistry, 2022, 122, .	2.0	0
4	Van der Waals Heterostructures Based on Porous Graphene for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2022, 126, 7849-7858.	3.1	7
5	Single-atom catalysts modified by molecular groups for electrochemical nitrogen reduction. Nano Research, 2022, 15, 9663-9669.	10.4	11
6	High-Loading Single-Atomic-Site Silver Catalysts with an Ag ₁ –C ₂ N ₁ Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catalysis, 2021, 11, 4946-4954.	11.2	62
7	In silico design of new nitrogen-rich melamine-based porous polyamides applied to CO2/N2 separation. Chemical Physics Letters, 2021, 771, 138509.	2.6	1
8	In Silico Design of Covalent Organic Framework-Based Electrocatalysts. Jacs Au, 2021, 1, 1497-1505.	7.9	28
9	A Porphyrinâ€Based Covalent Organic Framework for Metalâ€Free Photocatalytic Aerobic Oxidative Coupling of Amines. Chemistry - A European Journal, 2021, 27, 14390-14395.	3.3	15
10	Practical Enantioselective Synthesis of Chiroptical Polymers of Intrinsic Microporosity with Circular Polarized Luminescence. Macromolecules, 2021, 54, 11180-11186.	4.8	13
11	Bifunctional poly(ionic liquid) catalyst with dual-active-center for CO2 conversion: Synergistic effect of triazine and imidazolium motifs. Journal of CO2 Utilization, 2021, 54, 101778.	6.8	17
12	Isolated Single-Atom Ni–N ₅ Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 9691-9698.	9.1	167
13	A dramatic conformational effect of multifunctional zwitterions on zeolite crystallization. Chemical Communications, 2020, 56, 14693-14696.	4.1	1
14	Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect. Nature Communications, 2020, 11, 4481.	12.8	74
15	Electroplating sludge-derived spinel catalysts for NO removal via NH3 selective catalysis reduction. Applied Surface Science, 2020, 528, 146969.	6.1	11
16	Silver-Modified Ba _{1–<i>x</i>} Co _{0.7} Fe _{0.2} Nb _{0.1} O _{3â^î^} Perovskite Performing as a Cathodic Catalyst of Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 9421-9433.	8.0	19
17	van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano, 2020, 14, 1185-1195.	14.6	100
18	Salenâ€Based Conjugated Microporous Polymers for Efficient Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 7720-7726.	3.3	16

Dong Zhai

#	Article	IF	CITATIONS
19	Advantages of bimetallic nitric oxide reduction catalysts consisting of heavy metals rich in hazardous wastes. Journal of Cleaner Production, 2019, 237, 117834.	9.3	15
20	Organic Anions Facilitate in Situ Synthesis of Mesoporous LTA Zeolites. Chemistry of Materials, 2019, 31, 1528-1536.	6.7	15
21	Chiral Hydroxytetraphenylene-Catalyzed Asymmetric Conjugate Addition of Boronic Acids to Enones. Organic Letters, 2019, 21, 5040-5045.	4.6	33
22	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2019, 254, 186-193.	20.2	135
23	Insight into the Contribution of Isolated Mesopore on Diffusion in Hierarchical Zeolites: The Effect of Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 5453-5463.	3.7	4
24	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
25	Reactive molecular dynamics study of thermal decomposition of nanocarbon energetic composite materials. Computational Materials Science, 2017, 131, 126-131.	3.0	11
26	Molecular dynamics study on core-shell structure stability of aluminum encapsulated by nano-carbon materials. Chemical Physics Letters, 2017, 669, 192-195.	2.6	8
27	A first-principles evaluation of the stability, accessibility, and strength of BrÃ,nsted acid sites in zeolites. Journal of Catalysis, 2017, 352, 627-637.	6.2	29
28	Theoretical and Experimental Evidence for the Carbon–Oxygen Group Enhancement of NO Reduction. Environmental Science & Technology, 2017, 51, 14209-14216.	10.0	28
29	Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study. Journal of Physical Chemistry Letters, 2015, 6, 1333-1339.	4.6	41
30	Dissolution and Absorption: A Molecular Mechanism of Mesopore Formation in Alkaline Treatment of Zeolite. Chemistry of Materials, 2015, 27, 67-74.	6.7	52
31	Periodic DFT study on mechanism of selective catalytic reduction of NO via NH3 and O2 over the V2O5 (001) surface: Competitive sites and pathways. Journal of Catalysis, 2013, 305, 67-75.	6.2	33
32	Effect of temperature on the diffusion mechanism of xylene isomers in a FAU zeolite: a molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14, 7296.	2.8	8
33	Theoretical Investigation of Water Gas Shift Reaction Catalyzed by Iron Group Carbonyl Complexes M(CO) ₅ (M = Fe, Ru, Os). Journal of Physical Chemistry A, 2012, 116, 2529-2535.	2.5	31
34	Grand Canonical Monte Carlo simulations for energy gases on PIM-1 polymer and silicalite-1. Chemical Engineering Science, 2012, 68, 101-107.	3.8	23
35	Synergetic effect between Pd ²⁺ and Ir ⁴⁺ species promoting direct ethane dehydrogenation into ethylene over bimetallic PdIr/AC catalysts. Catalysis Science and Technology, 0, ,	4.1	1