
Markus Kratzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the charge transfer and electron–hole asymmetry in graphene–graphene quantum dot heterostructure. Nanotechnology, 2022, 33, 325704.	1.3	2
2	Direct determination of the area function for nanoindentation experiments. Journal of Materials Research, 2021, 36, 2154-2165.	1.2	9
3	Two-dimensional talc as a van der Waals material for solid lubrication at the nanoscale. Nanotechnology, 2021, 32, 265701.	1.3	14
4	Local-probe based electrical characterization of a multiphase intermetallic Î ³ -TiAl based alloy. Journal of Applied Physics, 2021, 129, 205107.	1.1	0
5	A modelling approach to describe the DC current-voltage behaviour of low-voltage zinc oxide varistors. Open Ceramics, 2021, 6, 100113.	1.0	5
6	Iron-rich talc as air-stable platform for magnetic two-dimensional materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	7
7	Synthesis and Assembly of Zinc Oxide Microcrystals by a Lowâ€Temperature Dissolution–Reprecipitation Process: Lessons Learned About Twin Formation in Heterogeneous Reactions. Chemistry - A European Journal, 2020, 26, 9319-9329.	1.7	1
8	Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasmaâ€Enhanced Atomic Layer Deposition. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000319.	0.8	20
9	2D Semiconductors: Interfacial Band Engineering of MoS ₂ /Gold Interfaces Using Pyrimidineâ€Containing Selfâ€Assembled Monolayers: Toward Contactâ€Resistanceâ€Free Bottomâ€Contacts (Adv. Electron. Mater. 5/2020). Advanced Electronic Materials, 2020, 6, 2070026.	2.6	1
10	Interfacial Band Engineering of MoS ₂ /Gold Interfaces Using Pyrimidineâ€Containing Selfâ€Assembled Monolayers: Toward Contactâ€Resistanceâ€Free Bottomâ€Contacts. Advanced Electronic Materials, 2020, 6, 2000110.	2.6	18
11	Single-step fabrication and work function engineering of Langmuir-Blodgett assembled few-layer graphene films with Li and Au salts. Scientific Reports, 2020, 10, 8476.	1.6	11
12	Molecular Structure and Electronic Properties of <i>para</i> -Hexaphenyl Monolayer on Atomically Flat Rutile TiO ₂ (110). Journal of Physical Chemistry C, 2020, 124, 5681-5689.	1.5	3
13	Initial Stage of para-Hexaphenyl Thin-Film Growth Controlled by the Step Structure of the Ion-Beam-Modified TiO2(110) Surface. Journal of Physical Chemistry C, 2019, 123, 20257-20269.	1.5	1
14	Lightâ€Assisted Charge Propagation in Networks of Organic Semiconductor Crystallites on Hexagonal Boron Nitride. Advanced Functional Materials, 2019, 29, 1903816.	7.8	6
15	Organic Nanostructures: Lightâ€Assisted Charge Propagation in Networks of Organic Semiconductor Crystallites on Hexagonal Boron Nitride (Adv. Funct. Mater. 43/2019). Advanced Functional Materials, 2019, 29, 1970300.	7.8	0
16	Adsorption and epitaxial growth of small organic semiconductors on hexagonal boron nitride. Journal Physics D: Applied Physics, 2019, 52, 383001.	1.3	15
17	The role of the probe tip material in distinguishing p- and n-type domains in bulk heterojunction solar cells by atomic force microscopy based methods. Journal of Applied Physics, 2019, 125, 185305.	1.1	5
18	Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy. Scientific Reports, 2018, 8, 422.	1.6	18

Markus Kratzer

#	Article	IF	CITATIONS
19	Growth morphologies of dihydro-tetraaza-acenes on c-plane sapphire. Surface Science, 2018, 678, 128-135.	0.8	6
20	Molecules on rails: friction anisotropy and preferential sliding directions of organic nanocrystallites on two-dimensional materials. Nanoscale, 2018, 10, 18835-18845.	2.8	9
21	Fabrication of ion bombardment induced rippled TiO ₂ surfaces to influence subsequent organic thin film growth. Journal of Physics Condensed Matter, 2018, 30, 283001.	0.7	3
22	Inkjet Printing of Soft, Stretchable Optical Waveguides through the Photopolymerization of High-Profile Linear Patterns. ACS Applied Materials & Interfaces, 2017, 9, 4941-4947.	4.0	34
23	Anti-adhesive layers on stainless steel using thermally stable dipodal perfluoroalkyl silanes. Applied Surface Science, 2017, 416, 824-833.	3.1	27
24	Effects of hole-transport layer homogeneity in organic solar cells – A multi-length scale study. Surfaces and Interfaces, 2017, 6, 72-80.	1.5	13
25	Probing charge transfer between molecular semiconductors and graphene. Scientific Reports, 2017, 7, 9544.	1.6	25
26	Surface analysis of epitaxially grown GeSn alloys with Sn contents between 15% and 18%. Surface and Interface Analysis, 2017, 49, 297-302.	0.8	21
27	Influence of TiO2(110) surface roughness on growth and stability of thin organic films. Journal of Chemical Physics, 2016, 145, 144703.	1.2	6
28	Epitaxy of highly ordered organic semiconductor crystallite networks supported by hexagonal boron nitride. Scientific Reports, 2016, 6, 38519.	1.6	26
29	Principal Factors of Contact Charging of Minerals for a Successful Triboelectrostatic Separation Process – a Review. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2016, 161, 359-382.	0.4	13
30	Local charge trapping in Ge nanoclustersdetected by Kelvin probe force microscopy. Applied Surface Science, 2016, 389, 783-789.	3.1	10
31	Thin film growth of aromatic rod-like molecules on graphene. Nanotechnology, 2016, 27, 292001.	1.3	21
32	Growth of <i>para</i> -Hexaphenyl Thin Films on Flat, Atomically Clean versus Air-Passivated TiO ₂ (110) Surfaces. Journal of Physical Chemistry C, 2015, 119, 17004-17015.	1.5	17
33	Investigating inhomogeneous electronic properties of radial junction solar cells using correlative microscopy. Japanese Journal of Applied Physics, 2015, 54, 08KA08.	0.8	7
34	Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene. Applied Physics Letters, 2015, 106, .	1.5	54
35	Template-assisted synthesis of CdS nanocrystal arrays in chemically inhomogeneous pores using a vapor–solid mechanism. RSC Advances, 2015, 5, 27496-27501.	1.7	3
36	Atomic Force Microscopy as a Tool to Explore Triboelectrostatic Phenomena in Mineral Processing. Chemie-Ingenieur-Technik, 2014, 86, 857-864.	0.4	17

Markus Kratzer

#	Article	IF	CITATIONS
37	Island shape anisotropy in organic thin film growth induced by ion-beam irradiated rippled surfaces. Physical Chemistry Chemical Physics, 2014, 16, 26112-26118.	1.3	11
38	Layer Dependent Wetting in Parahexaphenyl Thin Film Growth on Graphene. E-Journal of Surface Science and Nanotechnology, 2014, 12, 31-39.	0.1	8
39	Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology, 2013, 24, 015303.	1.3	50
40	Temperature dependent growth morphologies of parahexaphenyl on SiO2 supported exfoliated graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 04D114.	0.6	10
41	Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM. Beilstein Journal of Nanotechnology, 2013, 4, 208-217.	1.5	29
42	UV-induced modulation of the conductivity of polyaniline: towards a photo-patternable charge injection layer for structured organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 2922-2928.	6.7	29
43	Electrical and photovoltaic properties of self-assembled Ge nanodomes on Si(001). Physical Review B, 2012, 86, .	1.1	11
44	Electrical properties of ZnO nanorods studied by conductive atomic force microscopy. Journal of Applied Physics, 2011, 110, .	1.1	39
45	A theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surface Science, 2010, 604, 926-931.	0.8	16
46	Nanoscale electrical characterization of arrowhead defects in GalnP thin films grown on Ge. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5G5-C5G10.	0.6	6
47	Preparation and calibration of ultrathin Zn layers on Pd(111). Applied Surface Science, 2009, 255, 5755-5759.	3.1	19
48	Growth and Desorption Kinetics of Ultrathin Zn Layers on Pd(111). Journal of Physical Chemistry C, 2009, 113, 9788-9796.	1.5	36
49	Adsorption/desorption of H2 and CO on Zn-modified Pd(111). Journal of Chemical Physics, 2008, 129, 224706.	1.2	36
50	Methanol adsorption on Cu(110) and the angular distribution of the reaction products. Journal of Chemical Physics, 2007, 126, 164710.	1.2	11
51	Water Formation on Clean and Vanadium Oxide Covered Pd(111) by Permeating Deuterium. Journal of Physical Chemistry C, 2007, 111, 12723-12729.	1.5	1
52	Angular distribution of desorbing/permeating deuterium from modified Pd(111) surfaces. Surface Science, 2007, 601, 3456-3463.	0.8	6
53	Time-of-flight studies on catalytic model reactions. Topics in Catalysis, 2007, 46, 189-199.	1.3	4
54	Model reaction studies on vanadium oxide nanostructures on Pd(111). Journal of Chemical Physics, 2006, 125, 074703.	1.2	7

#	Article	IF	CITATIONS
55	Reaction and desorption kinetics of H2 and H2O on activated and non-activated palladium surfaces. Vacuum, 2005, 80, 81-86.	1.6	10
56	Manipulating the activation barrier for H2(D2) desorption from potassium-modified palladium surfaces. Journal of Chemical Physics, 2005, 123, 204702.	1.2	9