
Joachim Curtius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8690594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	2.4	8
2	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
3	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
4	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	2.4	10
5	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94
6	Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Science and Technology, 2021, 55, 586-599.	3.1	119
7	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	3.1	13
8	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	4.9	38
9	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	4.9	12
10	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	27.8	169
11	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	10.3	61
12	Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2020, 13, 2501-2522.	3.1	21
13	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
14	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
15	Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe. Atmospheric Chemistry and Physics, 2020, 20, 15983-16006.	4.9	24
16	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	4.9	68
17	lce-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core. Atmospheric Chemistry and Physics, 2020, 20, 12459-12482.	4.9	6
18	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	10.0	32

#	Article	IF	CITATIONS
19	A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Atmospheric Chemistry and Physics, 2019, 19, 4823-4849.	4.9	48
20	Field evaluation of a Portable Fine Particle Concentrator (PFPC) for ice nucleating particle measurements. Aerosol Science and Technology, 2019, 53, 1067-1078.	3.1	9
21	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	2.7	52
22	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	4.9	21
23	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	4.9	92
24	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	4.9	56
25	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	10.3	164
26	Size-resolved online chemical analysis of nanoaerosol particles: a thermal desorption differential mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2018, 11, 5489-5506.	3.1	16
27	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	7.1	118
28	ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO. Bulletin of the American Meteorological Society, 2017, 98, 271-288.	3.3	107
29	PTR3: An Instrument for Studying the Lifecycle of Reactive Organic Carbon in the Atmosphere. Analytical Chemistry, 2017, 89, 5824-5831.	6.5	112
30	Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.	3.3	198
31	Characterization of Aerosol Particles Produced by a Skyscraper Demolition by Blasting. Journal of Aerosol Science, 2017, 112, 11-18.	3.8	6
32	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	4.9	50
33	Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmospheric Chemistry and Physics, 2017, 17, 4817-4835.	4.9	62
34	Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmospheric Chemistry and Physics, 2017, 17, 575-594.	4.9	39
35	Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles. Atmospheric Chemistry and Physics, 2017, 17, 7581-7591.	4.9	1
36	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	4.9	11

#	Article	IF	CITATIONS
37	Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 2135-2145.	3.1	27
38	Characterization of the mass-dependent transmission efficiency of a CIMS. Atmospheric Measurement Techniques, 2016, 9, 1449-1460.	3.1	85
39	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
40	Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.	3.3	16
41	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	3.3	17
42	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
43	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
44	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
45	New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.	12.6	348
46	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
47	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289
48	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
49	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of <i>α</i> -pinene. Atmospheric Chemistry and Physics, 2016, 16, 6495-6509.	4.9	71
50	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	4.9	47
51	Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany. Atmospheric Chemistry and Physics, 2016, 16, 12793-12813.	4.9	76
52	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	4.9	29
53	ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO. Bulletin of the American Meteorological Society, 2016, 97, 1885-1908.	3.3	124
54	A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques. Atmospheric Chemistry and Physics, 2015, 15, 2489-2518.	4.9	200

#	Article	IF	CITATIONS
55	Intercomparing different devices for the investigation of ice nucleating particles using Snomax [®] as test substance. Atmospheric Chemistry and Physics, 2015, 15, 1463-1485.	4.9	108
56	Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques. Atmospheric Chemistry and Physics, 2015, 15, 4161-4178.	4.9	38
57	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
58	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>4.9</td><td>27</td></sub<></sub 	4.9	27
59	system. Atmospheric Chemistry and Physics, 2015, 15, 10701-10721. On the derivation of particle nucleation rates from experimental formation rates. Atmospheric Chemistry and Physics, 2015, 15, 4063-4075.	4.9	33
60	Elemental composition and clustering behaviour of \hat{I}_{\pm} -pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	4.9	17
61	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	4.9	11
62	Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.	3.1	30
63	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	4.9	84
64	Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN. Atmospheric Measurement Techniques, 2014, 7, 3849-3859.	3.1	7
65	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
66	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
67	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
68	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
69	Ternary H[sub 2]SO[sub 4]-H[sub 2]O-NH[sub 3] neutral and charged nucleation rates for a wide range of atmospheric conditions. , 2013, , .		0
70	Role of organics in particle nucleation: From the lab to global model. , 2013, , .		1
71	Measurement of neutral sulfuric acid-dimethylamine clusters using CI-APi-TOF-MS. , 2013, , .		0
72	A double inversion: Size and time resolved growth rates for aerosol particles in the CERN CLOUD experiment. , 2013, , .		0

#	Article	IF	CITATIONS
73	Measurements of IN and BIO-IN with the fast ice nucleus chamber FINCH at Mt. Zugspitze, Mt. Puy de Do^me and Jungfraujoch during fall and winter. , 2013, , .		1
74	Characterization of diethylene glycol-condensation particle counters for detection of sub-3 nm particles. , 2013, , .		2
75	Particle nucleation events at the high Alpine station Jungfraujoch. , 2013, , .		0
76	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .		1
77	Multi-species nucleation rates in CLOUD. , 2013, , .		1
78	Simulation of ion-induced nucleation in the CLOUD chamber. , 2013, , .		0
79	Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS). , 2013, , .		0
80	Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric Measurement Techniques, 2013, 6, 1793-1804.	3.1	63
81	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
82	Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem. Atmospheric Chemistry and Physics, 2013, 13, 11465-11471.	4.9	29
83	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
84	Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmospheric Chemistry and Physics, 2012, 12, 857-867.	4.9	62
85	Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmospheric Chemistry and Physics, 2012, 12, 9427-9439.	4.9	76
86	Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid. Journal of Physical Chemistry A, 2012, 116, 6375-6386.	2.5	132
87	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
88	A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects. Journal of Aerosol Science, 2011, 42, 532-543.	3.8	44
89	In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus. Atmospheric Chemistry and Physics, 2011, 11, 5569-5590.	4.9	59
90	In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism. Atmospheric Chemistry and Physics, 2011, 11, 9983-10010.	4.9	66

#	Article	IF	CITATIONS
91	Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009. Aerosol Science and Technology, 2011, 45, 46-64.	3.1	53
92	Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2011, 4, 437-443.	3.1	71
93	Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility. Atmospheric Chemistry and Physics, 2010, 10, 5573-5592.	4.9	59
94	Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmospheric Chemistry and Physics, 2010, 10, 8077-8095.	4.9	127
95	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. Atmospheric Chemistry and Physics, 2010, 10, 7389-7407.	4.9	109
96	Results from the CERN pilot CLOUD experiment. Atmospheric Chemistry and Physics, 2010, 10, 1635-1647.	4.9	96
97	Laboratory study on new particle formation from the reaction OH + SO ₂ : influence of experimental conditions, H ₂ O vapour, NH ₃ and the amine tert-butylamine on the overall process. Atmospheric Chemistry and Physics, 2010, 10,	4.9	194
98	Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophysical Research Letters, 2010, 37, .	4.0	138
99	Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application. Atmospheric Measurement Techniques, 2009, 2, 243-258.	3.1	47
100	Nucleation of atmospheric particles. EPJ Web of Conferences, 2009, 1, 199-209.	0.3	11
101	Inadvertent climate modification due to anthropogenic lead. Nature Geoscience, 2009, 2, 333-336.	12.9	91
102	Characterization of a Modified Expansion Condensation Particle Counter for Detection of Nanometer-Sized Particles. Aerosol Science and Technology, 2009, 43, 767-780.	3.1	12
103	Trace Detection of Organic Compounds in Complex Sample Matrixes by Single Photon Ionization Ion Trap Mass Spectrometry: Real-Time Detection of Security-Relevant Compounds and Online Analysis of the Coffee-Roasting Process. Analytical Chemistry, 2009, 81, 4456-4467.	6.5	38
104	Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmospheric Chemistry and Physics, 2009, 9, 6775-6792.	4.9	100
105	Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF ₆ and CO ₂ . Atmospheric Chemistry and Physics, 2009, 9, 5905-5919.	4.9	94
106	Comparison of Two Aerodynamic Lenses as an Inlet for a Single Particle Laser Ablation Mass Spectrometer. Aerosol Science and Technology, 2008, 42, 970-980.	3.1	26
107	Detection of security relevant substances within the cooperative project SAFE XUV. , 2008, , .		0
108	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	4.9	74

#	Article	IF	CITATIONS
109	Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles. International Journal of Mass Spectrometry, 2007, 265, 30-39.	1.5	15
110	Atmospheric Ion-induced Aerosol Nucleation. Space Science Reviews, 2007, 125, 159-167.	8.1	66
111	Nucleation of atmospheric aerosol particles. Comptes Rendus Physique, 2006, 7, 1027-1045.	0.9	116
112	Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany. Atmospheric Environment, 2006, 40, 4316-4327.	4.1	196
113	Digital crossed-beam holography forin situimaging of atmospheric ice particles. Journal of Optics, 2006, 8, 796-806.	1.5	29
114	Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles. Science, 2006, 312, 1375-1378.	12.6	871
115	Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmospheric Chemistry and Physics, 2005, 5, 3053-3069.	4.9	113
116	Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs). Atmospheric Chemistry and Physics, 2005, 5, 1371-1380.	4.9	160
117	Characterization of an Automated, Water-Based Expansion Condensation Nucleus Counter for Ultrafine Particles. Aerosol Science and Technology, 2005, 39, 1174-1183.	3.1	18
118	Firework Emissions for Satellite Validation?. Environmental Chemistry, 2005, 2, 94.	1.5	4
119	Kinetics, thermodynamics, and ab initio calculations of HS2O7â^'(H2SO4)x (x=1–3) cluster ions. International Journal of Mass Spectrometry, 2004, 232, 9-15.	1.5	6
120	Atmospheric ion-induced nucleation of sulfuric acid and water. Journal of Geophysical Research, 2004, 109, .	3.3	251
121	ION-INDUCED NUCLEATION OF SULFURIC ACID AND WATER IN THE ATMOSPHERE: KINETIC NUCLEATION MODELING WITH MEASURED THERMOCHEMISTRY. Journal of Aerosol Science, 2004, 35, S1193-S1194.	3.8	0
122	Laboratory studies of the homogeneous nucleation of iodine oxides. Atmospheric Chemistry and Physics, 2004, 4, 19-34.	4.9	140
123	Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7. Journal of Geophysical Research, 2002, 107, AAC 2-1.	3.3	108
124	Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency. Geophysical Research Letters, 2002, 29, 17-1.	4.0	24
125	Lasing on a cloudy afternoon. Nature, 2002, 418, 826-827.	27.8	26
126	Measurement of aerosol sulfuric acid: 1. Experimental setup, characterization, and calibration of a novel mass spectrometric system. Journal of Geophysical Research, 2001, 106, 31965-31974.	3.3	8

#	Article	IF	CITATIONS
127	Measurement of aerosol sulfuric acid: 2. Pronounced layering in the free troposphere during the second Aerosol Characterization Experiment (ACE 2). Journal of Geophysical Research, 2001, 106, 31975-31990.	3.3	28
128	Cluster Ion Thermal Decomposition (I):  Experimental Kinetics Study and ab Initio Calculations for HSO4-(H2SO4)x(HNO3)y. Journal of Physical Chemistry A, 2001, 105, 10867-10873.	2.5	66
129	Cluster Ion Thermal Decomposition (II):  Master Equation Modeling in the Low-Pressure Limit and Fall-Off Regions. Bond Energies for HSO4-(H2SO4)x(HNO3)y. Journal of Physical Chemistry A, 2001, 105, 10874-10883.	2.5	54
130	Aerosol production and growth in the upper free troposphere. Journal of Geophysical Research, 2000, 105, 24751-24762.	3.3	42
131	The temporal evolution of the ratio HNO3/NOyin the Arctic lower stratosphere from January to March 1997. Geophysical Research Letters, 1999, 26, 1125-1128.	4.0	18
132	Detection of massive negative chemiions in the exhaust plume of a jet aircraft in flight. Geophysical Research Letters, 1999, 26, 1577-1580.	4.0	23
133	Observation of NOyuptake by particles in the Arctic tropopause region at low temperatures. Geophysical Research Letters, 1999, 26, 2215-2218.	4.0	23
134	HNO3partitioning in cirrus clouds. Geophysical Research Letters, 1999, 26, 2207-2210.	4.0	32
135	Title is missing!. Journal of Atmospheric Chemistry, 1998, 30, 3-10.	3.2	38
136	Indications for aerosol growth in the free troposphere during the ACE-2 experiment. Journal of Aerosol Science, 1998, 29, S1099-S1100.	3.8	0
137	First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight. Geophysical Research Letters, 1998, 25, 923-926.	4.0	53