
Alessandro Tozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8690493/publications.pdf Version: 2024-02-01

ALESSANDRO TOZZI

#	Article	IF	CITATIONS
1	Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 2007, 30, 211-219.	4.2	707
2	Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neuroscience, 2014, 17, 1022-1030.	7.1	598
3	Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 2013, 52, 229-236.	2.1	155
4	The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D ₂ /A _{2A} Receptor Interaction in the Striatum: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 1850-1862.	1.7	140
5	Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Molecular Psychiatry, 2017, 22, 689-702.	4.1	134
6	Plasticity and repair in the post-ischemic brain. Neuropharmacology, 2008, 55, 353-362.	2.0	132
7	Decreased NR2B Subunit Synaptic Levels Cause Impaired Long-Term Potentiation But Not Long-Term Depression. Journal of Neuroscience, 2009, 29, 669-677.	1.7	126
8	Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134, 375-387.	3.7	125
9	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	3.7	124
10	Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. European Journal of Neuroscience, 2003, 18, 2133-2145.	1.2	123
11	A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice. PLoS ONE, 2010, 5, e11464.	1.1	119
12	Mitochondria and the Link Between Neuroinflammation and Neurodegeneration. Journal of Alzheimer's Disease, 2010, 20, S369-S379.	1.2	118
13	Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behavioural Brain Research, 2009, 199, 108-118.	1.2	115
14	Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18985-18990.	3.3	113
15	Cortical spreading depression as a target for anti-migraine agents. Journal of Headache and Pain, 2013, 14, 62.	2.5	110
16	The differences shown by C57BL/6 and DBA/2 inbred mice in detecting spatial novelty are subserved by a different hippocampal and parietal cortex interplay. Behavioural Brain Research, 1996, 80, 33-40.	1.2	88
17	c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death and Disease, 2014, 5, e1019-e1019.	2.7	88
18	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	3.7	82

#	Article	IF	CITATIONS
19	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	0.7	77
20	c-Jun N-terminal Kinase Regulates Soluble AÎ ² Oligomers and Cognitive Impairment in AD Mouse Model. Journal of Biological Chemistry, 2011, 286, 43871-43880.	1.6	74
21	Ischemic Stroke Injury Is Mediated by Aberrant Cdk5. Journal of Neuroscience, 2014, 34, 8259-8267.	1.7	73
22	Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. Journal of Physiology, 2004, 555, 323-330.	1.3	72
23	Epilepsy, amyloid-β, and D1 dopamine receptors: a possible pathogenetic link?. Neurobiology of Aging, 2016, 48, 161-171.	1.5	71
24	Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Scientific Reports, 2016, 6, 20926.	1.6	68
25	L-Type Ca ²⁺ Channel Blockers Attenuate Electrical Changes and Ca ²⁺ Rise Induced by Oxygen/Glucose Deprivation in Cortical Neurons. Stroke, 1998, 29, 196-202.	1.0	67
26	Rebalance of Striatal NMDA/AMPA Receptor Ratio Underlies the Reduced Emergence of Dyskinesia During D2-Like Dopamine Agonist Treatment in Experimental Parkinson's Disease. Journal of Neuroscience, 2012, 32, 17921-17931.	1.7	67
27	Electrophysiology and Pharmacology of Striatal Neuronal Dysfunction Induced by Mitochondrial Complex I Inhibition. Journal of Neuroscience, 2008, 28, 8040-8052.	1.7	54
28	Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission. Neuropharmacology, 2007, 53, 783-789.	2.0	53
29	The Endocannabinoid System in Parkinsons Disease. Current Pharmaceutical Design, 2008, 14, 2337-2346.	0.9	52
30	Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience, 2011, 192, 67-73.	1.1	50
31	Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 2021, 144, 3477-3491.	3.7	49
32	Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system. Frontiers in Cellular Neuroscience, 2015, 9, 192.	1.8	43
33	Group I mGluRs Coupled to G Proteins Are Regulated by Tyrosine Kinase in Dopamine Neurons of the Rat Midbrain. Journal of Neurophysiology, 2001, 85, 2490-2497.	0.9	39
34	Nociceptin/Orphanin FQ Receptor Agonists Attenuate L-DOPA-Induced Dyskinesias. Journal of Neuroscience, 2012, 32, 16106-16119.	1.7	39
35	Reactions to spatial and nonspatial change in two inbred strains of mice: Further evidence supporting the hippocampal dysfunction hypothesis in the DBA/2 strain. Cognitive, Affective and Behavioral Neuroscience, 1995, 23, 284-289.	1.2	38
36	Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Reports, 2021, 37, 110094.	2.9	38

Alessandro Tozzi

#	Article	IF	CITATIONS
37	Mechanisms underlying altered striatal synaptic plasticity in old A53T-α synuclein overexpressing mice. Neurobiology of Aging, 2012, 33, 1792-1799.	1.5	37
38	Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease. Cell Death and Disease, 2018, 9, 204.	2.7	35
39	Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neuroscience Letters, 2004, 365, 137-142.	1.0	34
40	Trace Amines Depress GABAB Response in Dopaminergic Neurons by Inhibiting G-βγ-Gated Inwardly Rectifying Potassium Channels. Molecular Pharmacology, 2005, 67, 1283-1290.	1.0	31
41	Plastic abnormalities in experimental Huntington's disease. Current Opinion in Pharmacology, 2007, 7, 106-111.	1.7	30
42	Region- and age-dependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 123-133.	1.5	30
43	Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats. Physiological Reports, 2013, 1, e00185.	0.7	29
44	Impaired Plasticity at Specific Subset of Striatal Synapses in the Ts65Dn Mouse Model of Down Syndrome. Biological Psychiatry, 2010, 67, 666-671.	0.7	28
45	Electrophysiological actions of zonisamide on striatal neurons: Selective neuroprotection against complex I mitochondrial dysfunction. Experimental Neurology, 2010, 221, 217-224.	2.0	28
46	Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis. Neurobiology of Disease, 2018, 113, 97-108.	2.1	27
47	Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience, 2009, 163, 735-740.	1.1	26
48	Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Molecular Psychiatry, 2021, 26, 1928-1944.	4.1	26
49	Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Frontiers in Cellular Neuroscience, 2015, 9, 376.	1.8	25
50	Protective role of hydrogen peroxide in oxygen-deprived dopaminergic neurones of the rat substantia nigra. Journal of Physiology, 2005, 568, 97-110.	1.3	23
51	The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signalling, 2006, 2, 575-582.	1.1	23
52	A critical role of NO/cGMP/PKG dependent pathway in hippocampal post-ischemic LTP: Modulation by zonisamide. Neurobiology of Disease, 2011, 44, 185-191.	2.1	23
53	Abnormal cortical lysosomal β-hexosaminidase and β-galactosidase activity at post-synaptic sites during Alzheimer's disease progression. International Journal of Biochemistry and Cell Biology, 2015, 58, 62-70.	1.2	23
54	Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson's disease. Neurobiology of Disease, 2018, 118, 1-8.	2.1	22

Alessandro Tozzi

#	Article	IF	CITATIONS
55	Mortalin inhibition in experimental Parkinson's disease. Movement Disorders, 2011, 26, 1639-1647.	2.2	21
56	Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Frontiers in Neuroscience, 2020, 14, 572511.	1.4	21
5 7	Depression of mGluR-mediated IPSCs by 5-HT in dopamine neurons of the rat substantia nigra pars compacta. European Journal of Neuroscience, 2003, 18, 2743-2750.	1.2	20
58	Bidirectional Synaptic Plasticity Is Driven by Sex Neurosteroids Targeting Estrogen and Androgen Receptors in Hippocampal CA1 Pyramidal Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 534.	1.8	20
59	A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity. Experimental Neurology, 2009, 217, 231-234.	2.0	19
60	Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	19
61	Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiology of Disease, 2020, 140, 104848.	2.1	19
62	A2A Adenosine Receptor Antagonism Enhances Synaptic and Motor Effects of Cocaine via CB1 Cannabinoid Receptor Activation. PLoS ONE, 2012, 7, e38312.	1.1	18
63	Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism and Related Disorders, 2016, 22, S65-S68.	1.1	18
64	Interferon-β1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: Electrophysiological evidence. Neurobiology of Disease, 2014, 62, 387-393.	2.1	17
65	Interferon-β1a modulates glutamate neurotransmission in the CNS through CaMKII and GluN2A-containing NMDA receptors. Neuropharmacology, 2016, 100, 98-105.	2.0	17
66	Selective inhibition of mitochondrial sodium-calcium exchanger protects striatal neurons from α-synuclein plus rotenone induced toxicity. Cell Death and Disease, 2019, 10, 80.	2.7	17
67	Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection. International Journal of Molecular Sciences, 2021, 22, 9753.	1.8	17
68	N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP. Glycobiology, 2011, 21, 634-643.	1.3	15
69	From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Frontiers in Cellular Neuroscience, 2020, 14, 158.	1.8	15
70	lschemic-LTP in Striatal Spiny Neurons of both Direct and Indirect Pathway Requires the Activation of D1-Like Receptors and NO/Soluble Guanylate Cyclase/cGMP Transmission. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 278-286.	2.4	13
71	Lacosamide protects striatal and hippocampal neurons from inÂvitro ischemia without altering physiological synaptic plasticity. Neuropharmacology, 2018, 135, 424-430.	2.0	13
72	Dopamine-containing Neurons are Silenced by Energy Deprivation: A Defensive Response or Beginning of Cell Death?. NeuroToxicology, 2005, 26, 857-868.	1.4	12

#	Article	IF	CITATIONS
73	Intravenous administration of pravastatin immediately after middle cerebral artery occlusion reduces cerebral oedema in spontaneously hypertensive rats. European Journal of Pharmacology, 2011, 660, 381-386.	1.7	12
74	Na + /Ca 2+ Exchanger Maintains Ionic Homeostasis in the Peri-Infarct Area. Stroke, 2007, 38, 1614-1620.	1.0	11
75	Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat. European Journal of Neuroscience, 2017, 45, 499-509.	1.2	10
76	Hypoxic and hypoglycaemic changes of intracellular pH in cerebral cortical pyramidal neurones. NeuroReport, 1998, 9, 1447-1450.	0.6	8
77	Differential effect of FHM2 mutation on synaptic plasticity in distinct hippocampal regions. Cephalalgia, 2019, 39, 1333-1338.	1.8	8
78	Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology, 2020, 170, 108024.	2.0	8
79	Striatal spreading depolarization: Possible implication in levodopaâ€induced dyskineticâ€like behavior. Movement Disorders, 2019, 34, 832-844.	2.2	6
80	Homer1b/c clustering is impaired in Phelan-McDermid Syndrome iPSCs derived neurons. Molecular Psychiatry, 2017, 22, 637-637.	4.1	4
81	Actions of the sodium channel inhibitor 202W92 on rat midbrain dopaminergic neurons. Synapse, 2003, 48, 123-130.	0.6	3

Trace Amines Cause More than One Effect on Dopaminergic Neurons. , 2005, , 161-175.