
## Mercedes A Peltzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8690326/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry, 2022, 372, 131346.                                                                | 4.2 | 36        |
| 2  | Water Vapour Transport in Biopolymeric Materials: Effects of Thickness and Water Vapour Pressure<br>Gradient on Yeast Biomass-Based Films. Journal of Polymers and the Environment, 2022, 30, 2976-2989.       | 2.4 | 6         |
| 3  | New Antioxidant Active Packaging Films Based on Yeast Cell Wall and Naphtho-γ-Pyrone Extract.<br>Polymers, 2022, 14, 2066.                                                                                     | 2.0 | 2         |
| 4  | Incorporation of Poly(Itaconic Acid) with Quaternized Thiazole Groups on Gelatin-Based Films for Antimicrobial-Active Food Packaging. Polymers, 2021, 13, 200.                                                 | 2.0 | 20        |
| 5  | Reinforcement of Yeast Biomass Films with Bacterial Cellulose and Rice Husk Cellulose Nanofibres.<br>Journal of Polymers and the Environment, 2021, 29, 3242-3251.                                             | 2.4 | 5         |
| 6  | Impact of the filmâ€forming dispersion pH on the properties of yeast biomass films. Journal of the Science of Food and Agriculture, 2021, 101, 5636-5644.                                                      | 1.7 | 4         |
| 7  | Impact of Fungal Extracts on the Physical and Antioxidant Properties of Bioactive Films Based on<br>Enzymatically Hydrolyzed Yeast Cell Wall. Journal of Polymers and the Environment, 2021, 29,<br>1954-1962. | 2.4 | 2         |
| 8  | Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants, 2020, 9, 395.                                                  | 2.2 | 38        |
| 9  | Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films.<br>Food and Bioprocess Technology, 2020, 13, 1166-1180.                                                       | 2.6 | 35        |
| 10 | Biobased Materials from Microbial Biomass and Its Derivatives. Materials, 2020, 13, 1263.                                                                                                                      | 1.3 | 49        |
| 11 | Water kefir grains as an innovative source of materials: Study of plasticiser content on film properties. European Polymer Journal, 2019, 120, 109234.                                                         | 2.6 | 29        |
| 12 | Hydration and water vapour transport properties in yeast biomass based films: A study of plasticizer content and thickness effects. European Polymer Journal, 2018, 99, 9-17.                                  | 2.6 | 34        |
| 13 | Characterization of thermal, mechanical and hydration properties of novel films based on<br>Saccharomyces cerevisiae biomass. Innovative Food Science and Emerging Technologies, 2018, 48,<br>240-247.         | 2.7 | 17        |
| 14 | Use of Residual Yeast Cell Wall for New Biobased Materials Production: Effect of Plasticization on Film Properties. Food and Bioprocess Technology, 2018, 11, 1995-2007.                                       | 2.6 | 27        |
| 15 | PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.                                                                             |     | 6         |
| 16 | Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae.<br>Innovative Food Science and Emerging Technologies, 2016, 36, 83-91.                                             | 2.7 | 21        |
| 17 | EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, 2015, , 719-725.                                                                                                          | 0.1 | 7         |
| 18 | Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 2014, 121, 94-101.                                                         | 2.7 | 112       |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 2013, 32, 760-768.                                             | 2.3 | 253       |
| 20 | Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 2013, 114, 486-494. | 2.7 | 150       |
| 21 | Antibacterial biofilms based on calcium caseinate incorporated with carvacrol. , 2012, , .                                                               |     | ο         |
| 22 | Antioxidant and Antimicrobial Characterization of Active Films Based on Yeast Biomass and Thymol.<br>Food Biophysics, 0, , 1.                            | 1.4 | 0         |