
Vered Raz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8690009/publications.pdf

Version: 2024-02-01

VEDED RAZ

#	Article	IF	CITATIONS
1	Alternative Polyadenylation Utilization Results in Ribosome Assembly and mRNA Translation Deficiencies in a Model for Muscle Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1130-1140.	3.6	3
2	The metabolic landscape in chronic rotator cuff tear reveals tissueâ€regionâ€specific signatures. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 532-543.	7.3	7
3	Discovering fiber type architecture over the entire muscle using dataâ€driven analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1240-1249.	1.5	5
4	Longitudinal Assessment of Strength, Functional Capacity, Oropharyngeal Function, and Quality of Life in Oculopharyngeal Muscular Dystrophy. Neurology, 2021, 97, e1475-e1483.	1.1	11
5	Cytoskeletal disorganization underlies PABPN1-mediated myogenic disability. Scientific Reports, 2020, 10, 17621.	3.3	6
6	Age-Associated Salivary MicroRNA Biomarkers for Oculopharyngeal Muscular Dystrophy. International Journal of Molecular Sciences, 2020, 21, 6059.	4.1	9
7	Recommendations for the analysis of gene expression data to identify intrinsic differences between similar tissues. Genomics, 2020, 112, 3157-3165.	2.9	10
8	A dataâ€driven methodology reveals novel myofiber clusters in older human muscles. FASEB Journal, 2020, 34, 5525-5537.	0.5	7
9	Mouse models for muscular dystrophies: an overview. DMM Disease Models and Mechanisms, 2020, 13, dmm043562.	2.4	30
10	Loss of miR-451a enhances SPARC production during myogenesis. PLoS ONE, 2019, 14, e0214301.	2.5	8
11	Deacetylation Inhibition Reverses PABPN1-Dependent Muscle Wasting. IScience, 2019, 12, 318-332.	4.1	11
12	Diagnostics of short tandem repeat expansion variants using massively parallel sequencing and componential tools. European Journal of Human Genetics, 2019, 27, 400-407.	2.8	12
13	Highâ€ŧhroughput dataâ€driven analysis of myofiber composition reveals muscleâ€specific disease and ageâ€associated patterns. FASEB Journal, 2019, 33, 4046-4053.	0.5	2
14	The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB Journal, 2018, 32, 1579-1590.	0.5	25
15	Proteasomal activityâ€based probes mark protein homeostasis in muscles. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 798-807.	7.3	8
16	An alanine expanded PABPN1 causes increased utilization of intronic polyadenylation sites. Npj Aging and Mechanisms of Disease, 2017, 3, 6.	4.5	15
17	Dysfunctional transcripts are formed by alternative polyadenylation in OPMD. Oncotarget, 2017, 8, 73516-73528.	1.8	12
18	PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genetics, 2016, 12, e1006031.	3.5	41

Vered Raz

#	Article	IF	CITATIONS
19	Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. American Journal of Human Genetics, 2016, 98, 1020-1029.	6.2	188
20	Cytokine genes as potential biomarkers for muscle weakness in OPMD. Human Molecular Genetics, 2016, 25, 4282-4287.	2.9	3
21	Blood RNA expression profiles undergo major changes during the seventh decade. Oncotarget, 2016, 7, 71353-71361.	1.8	1
22	Molecular signatures of age-associated chronic degeneration of shoulder muscles. Oncotarget, 2016, 7, 8513-8523.	1.8	7
23	Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9. Skeletal Muscle, 2015, 5, 37.	4.2	31
24	Patterns of Age-Associated Degeneration Differ in Shoulder Muscles. Frontiers in Aging Neuroscience, 2015, 7, 236.	3.4	43
25	Multivariate Analyses of Rotator Cuff Pathologies in Shoulder Disability. PLoS ONE, 2015, 10, e0118158.	2.5	10
26	Oculopharyngeal Muscular Dystrophy as a Paradigm for Muscle Aging. Frontiers in Aging Neuroscience, 2014, 6, 317.	3.4	30
27	A Novel Feed-Forward Loop between ARIH2 E3-Ligase and PABPN1 Regulates Aging-Associated Muscle Degeneration. American Journal of Pathology, 2014, 184, 1119-1131.	3.8	27
28	Major aging-associated RNA expressions change at two distinct age-positions. BMC Genomics, 2014, 15, 132.	2.8	20
29	Nuclear entrapment and extracellular depletion of PCOLCE is associated with muscle degeneration in oculopharyngeal muscular dystrophy. BMC Neurology, 2013, 13, 70.	1.8	15
30	Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification. , 2013, 2013, 1-6.		1
31	A decline in PABPN1 induces progressive muscle weakness in Oculopharyngeal muscle dystrophy and in muscle aging. Aging, 2013, 5, 412-426.	3.1	49
32	Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Research, 2012, 40, 9089-9101.	14.5	148
33	Modeling Oculopharyngeal Muscular Dystrophy in Myotube Cultures Reveals Reduced Accumulation of Soluble Mutant PABPN1 Protein. American Journal of Pathology, 2011, 179, 1988-2000.	3.8	34
34	Differential Temporal and Spatial Progerin Expression during Closure of the Ductus Arteriosus in Neonates. PLoS ONE, 2011, 6, e23975.	2.5	27
35	Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skeletal Muscle, 2011, 1, 15.	4.2	40
36	Molecular Image Analysis: Quantitative Description and Classification of the Nuclear Lamina in Human Mesenchymal Stem Cells. International Journal of Molecular Imaging, 2011, 2011, 1-11.	1.3	8

Vered Raz

#	Article	IF	CITATIONS
37	Reversible aggregation of PABPN1 pre-inclusion structures. Nucleus, 2011, 2, 208-218.	2.2	20
38	Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy. PLoS Computational Biology, 2011, 7, e1002258.	3.2	15
39	Robust nuclear lamina-based cell classification of aging and senescent cells. Aging, 2011, 3, 1192-1201.	3.1	26
40	Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Human Molecular Genetics, 2010, 19, 2191-2207.	2.9	78
41	Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Human Molecular Genetics, 2009, 18, 1849-1859.	2.9	49
42	Segmentation and analysis of the threeâ€dimensional redistribution of nuclear components in human mesenchymal stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 816-824.	1.5	18
43	The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. Journal of Cell Science, 2008, 121, 4018-4028.	2.0	80
44	Classification of Cell Fates with Support Vector Machine Learning. , 2007, , 258-269.		2
45	Changes in lamina structure are followed by spatial reorganization of heterochromatic regions in caspase-8-activated human mesenchymal stem cells. Journal of Cell Science, 2006, 119, 4247-4256.	2.0	32
46	Deacetylation Inhibition Reverses PABPN1-Dependent Muscle Wasting. SSRN Electronic Journal, 0, , .	0.4	0
47	A Data-Driven Methodology Reveals Novel Myofiber Clusters in Older Human Muscles. SSRN Flectronic Journal, O	0.4	0