Alex V Kochetov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689701/publications.pdf Version: 2024-02-01

ALEX V KOCHETOV

#	Article	IF	CITATIONS
1	Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. BioEssays, 2008, 30, 683-691.	2.5	163
2	Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Research, 2011, 39, 567-577.	14.5	133
3	Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Letters, 1998, 440, 351-355.	2.8	97
4	The role of alternative translation start sites in the generation of human protein diversity. Molecular Genetics and Genomics, 2005, 273, 491-496.	2.1	61
5	uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Letters, 2008, 582, 1293-1297.	2.8	57
6	AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinformatics, 2007, 8, 318.	2.6	46
7	AUG codons at the beginning of protein coding sequences are frequent in eukaryotic mRNAs with a suboptimal start codon context. Bioinformatics, 2005, 21, 837-840.	4.1	44
8	Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biology, 2020, 20, 255.	3.6	33
9	Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 2012, 7, e35915.	2.5	32
10	Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus. Plant Cell Reports, 2007, 26, 1121-1126.	5.6	28
11	Simple database to select promoters for plant transgenesis. Transgenic Research, 2012, 21, 429-437.	2.4	25
12	Hidden coding potential of eukaryotic genomes: nonAUG started ORFs. Journal of Biomolecular Structure and Dynamics, 2013, 31, 103-114.	3.5	25
13	Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics, 2019, 20, 27.	2.7	24
14	Interrelations between the Nucleotide Context of Human Start AUG Codon, N-end Amino Acids of the Encoded Protein and Initiation of Translation. Journal of Biomolecular Structure and Dynamics, 2010, 27, 611-618.	3.5	22
15	The mTOR Signaling Pathway Activity and Vitamin D Availability Control the Expression of Most Autism Predisposition Genes. International Journal of Molecular Sciences, 2019, 20, 6332.	4.1	21
16	Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco. BMC Plant Biology, 2016, 16, 246.	3.6	20
17	Translational polymorphism as a potential source of plant proteins variety in Arabidopsis thaliana. Bioinformatics, 2004, 20, 445-447.	4.1	19
18	Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC Plant Biology, 2017, 17, 251.	3.6	15

Alex V Kochetov

#	Article	IF	CITATIONS
19	On nucleotide solvent accessibility in RNA structure. Gene, 2010, 463, 41-48.	2.2	10
20	AltORFev facilitates the prediction of alternative open reading frames in eukaryotic mRNAs. Bioinformatics, 2017, 33, 923-925.	4.1	9
21	Do Autism Spectrum and Autoimmune Disorders Share Predisposition Gene Signature Due to mTOR Signaling Pathway Controlling Expression?. International Journal of Molecular Sciences, 2021, 22, 5248.	4.1	7
22	The mechanism of potato resistance to Globodera rostochiensis: comparison of root transcriptomes of resistant and susceptible Solanum phureja genotypes. BMC Plant Biology, 2020, 20, 350.	3.6	5
23	Tandem termination signal in plant mRNAs. Gene, 2011, 481, 1-6.	2.2	4
24	Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state. Medical Hypotheses, 2012, 79, 709-712.	1.5	3
25	Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression. Methods in Molecular Biology, 2020, 2124, 69-106.	0.9	3
26	Abnormal mTOR Activity in Pediatric Autoimmune Neuropsychiatric and MIA-Associated Autism Spectrum Disorders. International Journal of Molecular Sciences, 2022, 23, 967.	4.1	3
27	mRNA Translational Enhancers as a Tool for Plant Gene Engineering. , 2015, , 187-196.		2
28	NLR Genes Related Transcript Sets in Potato Cultivars Bearing Genetic Material of Wild Mexican Solanum Species. Agronomy, 2021, 11, 2426.	3.0	2
29	The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible selfâ€replicating RNAs. BioEssays, 2014, 36, 1204-1212.	2.5	1