
Gregory J Gores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689453/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 589-604.	8.2	2,482
2	Hepatocellular carcinoma. Nature Reviews Disease Primers, 2016, 2, 16018.	18.1	1,863
3	Design and Endpoints of Clinical Trials in Hepatocellular Carcinoma. Journal of the National Cancer Institute, 2008, 100, 698-711.	3.0	1,545
4	Cholangiocarcinoma. Lancet, The, 2014, 383, 2168-2179.	6.3	1,350
5	Hepatocellular carcinoma: clinical frontiers and perspectives. Gut, 2014, 63, 844-855.	6.1	1,180
6	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
7	Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. Journal of Hepatology, 2014, 60, 1268-1289.	1.8	1,151
8	Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nature Reviews Clinical Oncology, 2018, 15, 95-111.	12.5	1,051
9	Diagnosis and management of primary sclerosing cholangitis. Hepatology, 2010, 51, 660-678.	3.6	1,048
10	Mechanisms of Hepatotoxicity. Toxicological Sciences, 2002, 65, 166-176.	1.4	1,043
11	Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology, 2013, 145, 1215-1229.	0.6	978
12	Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology, 2003, 125, 437-443.	0.6	948
13	Biliary Tract Cancers. New England Journal of Medicine, 1999, 341, 1368-1378.	13.9	933
14	Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncology, The, 2012, 13, e11-e22.	5.1	872
15	Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology, 2004, 40, 185-194.	3.6	721
16	Lysosomes in cell death. Oncogene, 2004, 23, 2881-2890.	2.6	658
17	Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. Journal of Clinical Investigation, 2000, 106, 1127-1137.	3.9	635
18	Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment. Hepatology, 2008, 48, 308-321.	3.6	614

#	Article	IF	CITATIONS
19	Apoptosis and necrosis in the liver: A tale of two deaths?. Hepatology, 2006, 43, S31-S44.	3.6	613
20	Free Fatty Acids Induce JNK-dependent Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2006, 281, 12093-12101.	1.6	612
21	Liver Transplantation with Neoadjuvant Chemoradiation is More Effective than Resection for Hilar Cholangiocarcinoma. Annals of Surgery, 2005, 242, 451-461.	2.1	581
22	Clinical diagnosis and staging of cholangiocarcinoma. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 512-522.	8.2	572
23	Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 2013, 45, 1470-1473.	9.4	564
24	Life and death by death receptors. FASEB Journal, 2009, 23, 1625-1637.	0.2	548
25	The role of proteases during apoptosis. FASEB Journal, 1996, 10, 587-597.	0.2	538
26	Cellular and Molecular Mechanisms of Liver Injury. Gastroenterology, 2008, 134, 1641-1654.	0.6	498
27	EPSTEIN-BARR VIRUS-INDUCED POSTTRANSPLANT LYMPHOPROLIFERATIVE DISORDERS. Transplantation, 1999, 68, 1517-1525.	0.5	489
28	Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. Journal of Clinical Investigation, 1999, 103, 137-145.	3.9	485
29	Apoptosis: The nexus of liver injury and fibrosis. Hepatology, 2004, 39, 273-278.	3.6	483
30	Efficacy of Neoadjuvant Chemoradiation, Followed by Liver Transplantation, for Perihilar Cholangiocarcinoma at 12 US Centers. Gastroenterology, 2012, 143, 88-98.e3.	0.6	475
31	Molecular Mechanisms of Lipotoxicity in Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2008, 28, 360-369.	1.8	453
32	Cholangiocarcinoma. Gastroenterology, 2005, 128, 1655-1667.	0.6	417
33	Surgical resection versus transplantation for early hepatocellular carcinoma: clues for the best strategy. Hepatology, 2000, 31, 1019-1021.	3.6	413
34	Hepatocyte Death: A Clear and Present Danger. Physiological Reviews, 2010, 90, 1165-1194.	13.1	399
35	Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology, 2003, 38, 1188-1198.	3.6	398
36	Ischemic-type biliary complications after orthotopic liver transplantation. Hepatology, 1992, 16, 49-53.	3.6	391

#	Article	IF	CITATIONS
37	Cholangiocarcinomas can originate from hepatocytes in mice. Journal of Clinical Investigation, 2012, 122, 2911-2915.	3.9	385
38	The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. American Journal of Gastroenterology, 2000, 95, 204-207.	0.2	376
39	Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes. Gastroenterology, 2016, 150, 956-967.	0.6	373
40	Apoptotic Body Engulfment by a Human Stellate Cell Line Is Profibrogenic. Laboratory Investigation, 2003, 83, 655-663.	1.7	370
41	Pathogenesis of Primary Sclerosing Cholangitis and Advances in Diagnosis and Management. Gastroenterology, 2013, 145, 521-536.	0.6	359
42	Liver cell necrosis: Cellular mechanisms and clinical implications. Gastroenterology, 1995, 108, 252-275.	0.6	358
43	Hepatocellular Carcinoma: Consensus Recommendations of the National Cancer Institute Clinical Trials Planning Meeting. Journal of Clinical Oncology, 2010, 28, 3994-4005.	0.8	358
44	Prolonged disease-free survival after orthotopic liver transplantation plus adjuvant chemoirradiation for cholangiocarcinoma. Liver Transplantation, 2000, 6, 309-316.	1.3	357
45	Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. American Journal of Physiology - Renal Physiology, 2011, 301, G825-G834.	1.6	357
46	Ursodeoxycholic acid â€~mechanisms of action and clinical use in hepatobiliary disorders'. Journal of Hepatology, 2001, 35, 134-146.	1.8	354
47	Recurrence of primary sclerosing cholangitis following liver transplantation. Hepatology, 1999, 29, 1050-1056.	3.6	344
48	A Comparison of Routine Cytology and Fluorescence in situ Hybridization for the Detection of Malignant Bile Duct Strictures. American Journal of Gastroenterology, 2004, 99, 1675-1681.	0.2	338
49	Long-term results of patients undergoing liver transplantation for primary sclerosing cholangitis. Hepatology, 1999, 30, 1121-1127.	3.6	329
50	The Value of Serum CA 19-9 in Predicting Cholangiocarcinomas in Patients with Primary Sclerosing Cholangitis. Digestive Diseases and Sciences, 2005, 50, 1734-1740.	1.1	300
51	Advanced Cytologic Techniques for the Detection of Malignant Pancreatobiliary Strictures. Gastroenterology, 2006, 131, 1064-1072.	0.6	297
52	Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. Journal of Hepatology, 2003, 39, 978-983.	1.8	294
53	Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology, 1999, 117, 669-677.	0.6	292
54	Fas enhances fibrogenesis in the bile duct ligated mouse: A link between apoptosis and fibrosis. Gastroenterology, 2002, 123, 1323-1330.	0.6	289

ARTICLE IF CITATIONS Cholangiocyte pathobiology. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 269-281. 8.2 Apoptosis and Necrosis in the Liver., 2013, 3, 977-1010. 56 280 USE OF FATTY DONOR LIVER IS ASSOCIATED WITH DIMINISHED EARLY PATIENT AND GRAFT SURVIVAL. 279 Transplantation, 1996, 62, 1246-1251. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. Journal of Hepatology, 58 1.8 271 2001, 34, 248-253. Cholangiocarcinoma. Nature Reviews Disease Primers, 2021, 7, 65. 18.1 270 60 The isolated perfused rat liver: Conceptual and practical considerations. Hepatology, 1986, 6, 511-517. 3.6 264 Hepatocellular Carcinoma: Molecular Pathways and New Therapeutic Targets. Seminars in Liver 1.8 261 Disease, 2005, 25, 212-225. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 62 2.6 254 43-9006. Oncogene, 2005, 24, 6861-6869. New staging system and a registry for perihilar cholangiocarcinoma. Hepatology, 2011, 53, 1363-1371. 3.6 Cholangiocarcinoma: Modern advances in understanding a deadly old disease. Journal of Hepatology, 1.8 251 64 2006, 45, 856-867. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology, 2011, 54, 1842-1852. 3.6 248 MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 66 3.6 247 and tissue inhibitor of metalloproteinase 3. Hepatology, 2009, 49, 1595-1601. cHCC CA: Consensus terminology for primary liver carcinomas with both hepatocytic and 3.6 244 cholangiocytic differentation. Hepatology, 2018, 68, 113-126. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology, 2008, 47, 68 3.6 242 1495-1503. Cholangiocarcinoma: Current concepts and insights. Hepatology, 2003, 37, 961-969. 240 Synthetic Smac/DIABLO Peptides Enhance the Effects of Chemotherapeutic Agents by Binding XIAP and 70 1.6 239 clAP1 in Situ. Journal of Biological Chemistry, 2002, 277, 44236-44243. Liver cancer: Approaching a personalized care. Journal of Hepatology, 2015, 62, S144-S156. 71 1.8 239 Classification, Diagnosis, and Management of Cholangiocarcinoma. Clinical Gastroenterology and 72 2.4 237 Hepatology, 2013, 11, 13-21.e1.

#	Article	IF	CITATIONS
73	Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. American Journal of Physiology - Renal Physiology, 2001, 281, C626-G634.	1.6	236
74	Primary sclerosing cholangitis: Summary of a workshop. Hepatology, 2006, 44, 746-764.	3.6	235
75	Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Human Pathology, 2014, 45, 1630-1638.	1.1	235
76	Systemic therapies for intrahepatic cholangiocarcinoma. Journal of Hepatology, 2020, 72, 353-363.	1.8	235
77	Liver transplantation for cholangiocarcinoma. Transplant International, 2010, 23, 692-697.	0.8	231
78	The panâ€caspase inhibitor Emricasan (<scp>IDN</scp> â€6556) decreases liver injury and fibrosis in a murine model of nonâ€alcoholic steatohepatitis. Liver International, 2015, 35, 953-966.	1.9	231
79	Liver Transplantation for Unresectable Perihilar Cholangiocarcinoma. Seminars in Liver Disease, 2004, 24, 201-207.	1.8	225
80	Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology, 2017, 66, 1125-1143.	3.6	218
81	APOPTOSIS OF SINUSOIDAL ENDOTHELIAL CELLS OCCURS DURING LIVER PRESERVATION INJURY BY A CASPASE-DEPENDENT MECHANISM1. Transplantation, 1999, 68, 89-96.	0.5	216
82	Nitric oxide–mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology, 2001, 120, 190-199.	0.6	212
83	Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology, 2005, 42, 1329-1338.	3.6	212
84	Cholangiocarcinoma. Clinics in Liver Disease, 2008, 12, 131-150.	1.0	212
85	Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. Hpb, 2011, 13, 356-360.	0.1	212
86	Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. Journal of Hepatology, 2010, 52, 586-593.	1.8	211
87	Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Human Pathology, 2012, 43, 1552-1558.	1.1	211
88	Diagnostic features and clinical outcome of ischemic-type biliary complications after liver transplantation. Hepatology, 1993, 17, 605-609.	3.6	209
89	Diagnostic Role of Serum CA 19-9 for Cholangiocarcinoma in Patients With Primary Sclerosing Cholangitis. Mayo Clinic Proceedings, 1993, 68, 874-879.	1.4	207
90	Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology, 1999, 30, 1128-1133.	3.6	207

#	Article	IF	CITATIONS
91	The Caspase Inhibitor IDN-6556 Attenuates Hepatic Injury and Fibrosis in the Bile Duct Ligated Mouse. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1191-1196.	1.3	206
92	Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology, 2003, 37, 87-95.	3.6	204
93	Mcl-1 Mediates Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Human Cholangiocarcinoma Cells. Cancer Research, 2004, 64, 3517-3524.	0.4	204
94	Interleukin-6 Contributes to Mcl-1 Up-regulation and TRAIL Resistance via an Akt-Signaling Pathway in Cholangiocarcinoma Cells. Gastroenterology, 2005, 128, 2054-2065.	0.6	204
95	Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. Journal of Lipid Research, 2016, 57, 1758-1770.	2.0	198
96	Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut, 2018, 67, 963-972.	6.1	197
97	Sustained IL-6/STAT-3 Signaling in Cholangiocarcinoma Cells Due to SOCS-3 Epigenetic Silencing. Gastroenterology, 2007, 132, 384-396.	0.6	196
98	Cathepsin B Knockout Mice Are Resistant to Tumor Necrosis Factor-α-Mediated Hepatocyte Apoptosis and Liver Injury. American Journal of Pathology, 2001, 159, 2045-2054.	1.9	195
99	Drop-out rates of patients with hepatocellular cancer listed for liver transplantation: Outcome with chemoembolization. Liver Transplantation, 2004, 10, 449-455.	1.3	195
100	Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances. Hepatology, 2019, 69, 1803-1815.	3.6	195
101	Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology, 2009, 49, 871-879.	3.6	193
102	Predictors of Disease Recurrence Following Neoadjuvant Chemoradiotherapy and Liver Transplantation for Unresectable Perihilar Cholangiocarcinoma. Transplantation, 2006, 82, 1703-1707.	0.5	190
103	Mixed lineage kinase 3 mediates release of Câ€X motif ligand 10–bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology, 2016, 63, 731-744.	3.6	190
104	Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology, 2016, 64, 2219-2233.	3.6	190
105	Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. Journal of Hepatology, 2016, 64, 651-660.	1.8	190
106	Plasma membrane bleb formation and rupture: A common feature of hepatocellular injury. Hepatology, 1990, 11, 690-698.	3.6	189
107	Death receptors in liver biology and pathobiology. Hepatology, 1999, 29, 1-4.	3.6	187
108	Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut, 2007, 56, 1124-1131.	6.1	187

#	Article	IF	CITATIONS
109	A prospective comparison of digital image analysis and routine cytology for the identification of malignancy in biliary tract strictures. Clinical Gastroenterology and Hepatology, 2004, 2, 214-219.	2.4	186
110	Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption ofSmad4 andPten in mice. Journal of Clinical Investigation, 2006, 116, 1843-1852.	3.9	186
111	Apoptosis and liver disease21Am J Med. 2000;108:567–574.22In collaboration with The American Physiological Society, Thomas E. Andreoli, MD, Editor. American Journal of Medicine, 2000, 108, 567-574.	0.6	184
112	Apoptosis in cancer: cause and cure. BioEssays, 2000, 22, 1007-1017.	1.2	181
113	Apoptosis in alcoholic and nonalcoholic steatohepatitis. Frontiers in Bioscience - Landmark, 2005, 10, 3093.	3.0	179
114	Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. American Journal of Physiology - Renal Physiology, 2000, 278, G992-G999.	1.6	178
115	Characteristics, management, and outcomes of patients with hepatocellular carcinoma in Africa: a multicountry observational study from the Africa Liver Cancer Consortium. The Lancet Gastroenterology and Hepatology, 2017, 2, 103-111.	3.7	177
116	A Multivariable Model Using Advanced Cytologic Methods for the Evaluation of Indeterminate Pancreatobiliary Strictures. Gastroenterology, 2009, 136, 2180-2186.	0.6	176
117	Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. Journal of Clinical Investigation, 2003, 112, 152-159.	3.9	176
118	The Bile Acid Taurochenodeoxycholate Activates a Phosphatidylinositol 3-Kinase-dependent Survival Signaling Cascade. Journal of Biological Chemistry, 2000, 275, 20210-20216.	1.6	175
119	In primary sclerosing cholangitis, gallbladder polyps are frequently malignant. American Journal of Gastroenterology, 2002, 97, 1138-1142.	0.2	175
120	JNK1-dependent PUMA Expression Contributes to Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2009, 284, 26591-26602.	1.6	174
121	Death receptor-mediated apoptosis and the liver. Journal of Hepatology, 2002, 37, 400-410.	1.8	173
122	Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. American Journal of Physiology - Renal Physiology, 2012, 302, G77-G84.	1.6	171
123	Transcriptional Regulation of Bim by FoxO3A Mediates Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2007, 282, 27141-27154.	1.6	170
124	Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Digestive Diseases and Sciences, 2016, 61, 1325-1336.	1.1	169
125	Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology, 2002, 122, 985-993.	0.6	166
126	CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. American Journal of Physiology - Renal Physiology, 2010, 299, G236-G243.	1.6	164

#	Article	IF	CITATIONS
127	Biliary repair and carcinogenesis are mediated by IL-33–dependent cholangiocyte proliferation. Journal of Clinical Investigation, 2014, 124, 3241-3251.	3.9	164
128	The Bile Acid Glycochenodeoxycholate Induces TRAIL-Receptor 2/DR5 Expression and Apoptosis. Journal of Biological Chemistry, 2001, 276, 38610-38618.	1.6	162
129	Mitochondrial Injury and Caspase Activation by the Local Anesthetic Lidocaine. Anesthesiology, 2004, 101, 1184-1194.	1.3	161
130	Therapeutic Effects of Deleting Cancer-Associated Fibroblasts in Cholangiocarcinoma. Cancer Research, 2013, 73, 897-907.	0.4	161
131	Tumor necrosis factor-α-associated lysosomal permeabilization is cathepsin B dependent. American Journal of Physiology - Renal Physiology, 2002, 283, G947-G956.	1.6	159
132	Long-term outcomes of positive fluorescence in situ hybridization tests in primary sclerosing cholangitis. Hepatology, 2010, 51, 174-180.	3.6	159
133	Apoptosis as a Mechanism for Liver Disease Progression. Seminars in Liver Disease, 2010, 30, 402-410.	1.8	159
134	Dysregulation of Apoptosis as a Mechanism of Liver Disease: An Overview. Seminars in Liver Disease, 1998, 18, 105-114.	1.8	158
135	Mechanisms of Lipotoxicity in NAFLD and Clinical Implications. Journal of Pediatric Gastroenterology and Nutrition, 2011, 53, 131-140.	0.9	157
136	Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. American Journal of Physiology - Renal Physiology, 2006, 290, G1339-G1346.	1.6	154
137	Death Receptor-Mediated Cell Death and Proinflammatory Signaling in Nonalcoholic Steatohepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 17-27.	2.3	153
138	The transforming growth factor ?1-inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress. Hepatology, 1999, 30, 1490-1497.	3.6	152
139	Emerging molecular therapeutic targets for cholangiocarcinoma. Journal of Hepatology, 2017, 67, 632-644.	1.8	150
140	EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointestinal Endoscopy, 2008, 67, 438-443.	0.5	145
141	Primary biliary cirrhosis: Associations with class II major histocompatibility complex antigens. Hepatology, 1987, 7, 889-892.	3.6	144
142	COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology, 2002, 35, 552-559.	3.6	141
143	Liver transplantation for gastroenteropancreatic neuroendocrine cancers: Defining selection criteria to improve survival. Liver Transplantation, 2006, 12, 448-456.	1.3	137
144	Desmoplastic stroma and cholangiocarcinoma: Clinical implications and therapeutic targeting. Hepatology, 2014, 59, 2397-2402.	3.6	137

#	Article	IF	CITATIONS
145	GALAD Score for Hepatocellular Carcinoma Detection in Comparison with Liver Ultrasound and Proposal of GALADUS Score. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 531-538.	1.1	135
146	LEUKOCYTE ADHESION AND CELL DEATH FOLLOWING ORTHOTOPIC LIVER TRANSPLANTATION IN THE RAT. Transplantation, 1991, 51, 959-964.	0.5	134
147	Bile acids activate EGF receptor via a TGF-α-dependent mechanism in human cholangiocyte cell lines. American Journal of Physiology - Renal Physiology, 2003, 285, G31-G36.	1.6	134
148	Myofibroblast-derived PDGF-BB promotes hedgehog survival signaling in cholangiocarcinoma cells. Hepatology, 2011, 54, 2076-2088.	3.6	134
149	The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology, 2018, 67, 1284-1302.	3.6	134
150	Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. American Journal of Physiology - Renal Physiology, 2006, 290, G129-G136.	1.6	133
151	Surrogate endpoints for clinical trials in primary sclerosing cholangitis: Review and results from an International PSC Study Group consensus process. Hepatology, 2016, 63, 1357-1367.	3.6	133
152	Alcoholic Hepatitis: Current Challenges and Future Directions. Clinical Gastroenterology and Hepatology, 2014, 12, 555-564.	2.4	128
153	Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Human Pathology, 2013, 44, 1216-1222.	1.1	127
154	Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nature Cancer, 2022, 3, 386-401.	5.7	126
155	Pathogenesis, Diagnosis, and Treatment of Alcoholic Liver Disease. Mayo Clinic Proceedings, 2001, 76, 1021-1029.	1.4	124
156	Primary Sclerosing Cholangitis and Cholangiocarcinoma. Seminars in Liver Disease, 2006, 26, 042-051.	1.8	123
157	Direct acting antiviral therapy and tumor recurrence after liver transplantation for hepatitis C-associated hepatocellular carcinoma. Journal of Hepatology, 2016, 65, 859-860.	1.8	123
158	Diabetes Is Associated With Increased Risk of Hepatocellular Carcinoma in Patients With Cirrhosis From Nonalcoholic Fatty Liver Disease. Hepatology, 2020, 71, 907-916.	3.6	123
159	Preoperative hepatic artery chemoembolization followed by orthotopic liver transplantation for hepatocellular carcinoma. Liver Transplantation, 1999, 5, 192-199.	1.9	121
160	Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology, 2006, 43, 335-344.	3.6	121
161	Risk factors for intrahepatic cholangiocarcinoma: Association between metformin use and reduced cancer risk. Hepatology, 2013, 57, 648-655.	3.6	120
162	Predictors of pretransplant dropout and posttransplant recurrence in patients with perihilar cholangiocarcinoma. Hepatology, 2012, 56, 972-981.	3.6	119

#	Article	IF	CITATIONS
163	Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. Journal of Hepatology, 2018, 69, 676-686.	1.8	119
164	Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase. Hepatology, 1999, 29, 1037-1043.	3.6	117
165	Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells. Journal of Hepatology, 2004, 41, 808-814.	1.8	117
166	Mechanisms of Liver Injury: An Overview. Current Molecular Medicine, 2003, 3, 483-490.	0.6	116
167	ILâ€33 facilitates oncogeneâ€induced cholangiocarcinoma in mice by an interleukinâ€6â€sensitive mechanism. Hepatology, 2015, 61, 1627-1642.	3.6	115
168	Lytic cell death in metabolic liver disease. Journal of Hepatology, 2020, 73, 394-408.	1.8	114
169	Endoscopic application of photodynamic therapy for cholangiocarcinoma. Gastrointestinal Endoscopy, 2001, 53, 500-504.	0.5	113
170	Tumor Necrosis Factor-related Apoptosis-inducing Ligand Activates a Lysosomal Pathway of Apoptosis That Is Regulated by Bcl-2 Proteins. Journal of Biological Chemistry, 2007, 282, 28960-28970.	1.6	113
171	An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples. Gastroenterology, 2015, 149, 1813-1824.e1.	0.6	113
172	Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 167-175.	0.5	112
173	Hepatocellular Carcinoma Is the Most Common Indication for Liver Transplantation and Placement on the Waitlist in the United States. Clinical Gastroenterology and Hepatology, 2017, 15, 767-775.e3.	2.4	112
174	Inducible Nitric Oxide Synthase Up-Regulates Notch-1 in Mouse Cholangiocytes: Implications for Carcinogenesis. Gastroenterology, 2005, 128, 1354-1368.	0.6	108
175	The mTOR pathway in hepatic malignancies. Hepatology, 2013, 58, 810-818.	3.6	108
176	Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology, 2009, 50, 1861-1870.	3.6	107
177	An Open‣abel, Doseâ€Escalation Study to Assess the Safety and Efficacy of ILâ€22 Agonist Fâ€652 in Patients With Alcoholâ€associated Hepatitis. Hepatology, 2020, 72, 441-453.	3.6	107
178	Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology, 2001, 33, 1432-1440.	3.6	106
179	Death Receptor 5 Signaling Promotes Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2011, 286, 39336-39348.	1.6	106
180	Cholangiocarcinoma: Molecular Pathways and Therapeutic Opportunities. Seminars in Liver Disease, 2014, 34, 456-464.	1.8	106

#	Article	IF	CITATIONS
181	Mortality and Hospital Utilization for Hepatocellular Carcinoma in the United States. Gastroenterology, 2005, 129, 486-493.	0.6	105
182	Early detection and treatment of cholangiocarcinoma. Liver Transplantation, 2000, 6, s30-s34.	1.3	104
183	IV. Bile acids and death receptors. American Journal of Physiology - Renal Physiology, 2003, 284, G734-G738.	1.6	103
184	Bile Acids Stimulate cFLIP Phosphorylation Enhancing TRAIL-mediated Apoptosis. Journal of Biological Chemistry, 2003, 278, 454-461.	1.6	102
185	Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9. Cancer Research, 2002, 62, 1648-53.	0.4	102
186	Primary Sclerosing Cholangitis Patients With Serial Polysomy Fluorescence In Situ Hybridization Results Are at Increased Risk of Cholangiocarcinoma. American Journal of Gastroenterology, 2011, 106, 2023-2028.	0.2	101
187	TVB-2640 (FASN Inhibitor) for the Treatment of Nonalcoholic Steatohepatitis: FASCINATE-1, a Randomized, Placebo-Controlled Phase 2a Trial. Gastroenterology, 2021, 161, 1475-1486.	0.6	101
188	The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transplantation, 2003, 9, 278-284.	1.3	100
189	Primary Sclerosing Cholangitis as a Premalignant Biliary Tract Disease: Surveillance and Management. Clinical Gastroenterology and Hepatology, 2015, 13, 2152-2165.	2.4	100
190	Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochemistry and Biophysics, 1999, 30, 71-88.	0.9	99
191	Transplantation for hilar cholangiocarcinoma. Liver Transplantation, 2004, 10, S65-S68.	1.3	99
192	Vascular complications after orthotopic liver transplantation after neoadjuvant therapy for hilar cholangiocarcinoma. Liver Transplantation, 2007, 13, 1372-1381.	1.3	99
193	Targeting senescent cholangiocytes and activated fibroblasts with Bâ€cell lymphomaâ€extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2â^'/â^') mice. Hepatology, 2018, 67, 247-259.	3.6	99
194	H <scp>EPATOLOGY</scp> : A home for hepatocellular cancer publications. Hepatology, 2009, 50, 1-2.	3.6	98
195	Management of liver adenomatosis: Results with a conservative surgical approach. Liver Transplantation, 1998, 4, 388-398.	1.9	97
196	Serine 64 Phosphorylation Enhances the Antiapoptotic Function of Mcl-1. Journal of Biological Chemistry, 2007, 282, 18407-18417.	1.6	94
197	TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. American Journal of Physiology - Renal Physiology, 2004, 287, G436-G443.	1.6	93
198	p16INK4a Promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology, 2002, 123, 1090-1098.	0.6	92

#	Article	IF	CITATIONS
199	MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology, 2011, 54, 2089-2098.	3.6	91
200	Primary Sclerosing Cholangitis Risk Estimate Tool (PREsTo) Predicts Outcomes of the Disease: A Derivation and Validation Study Using Machine Learning. Hepatology, 2020, 71, 214-224.	3.6	90
201	Mechanisms and clinical implications of hepatocyte lipoapoptosis. Clinical Lipidology, 2010, 5, 71-85.	0.4	89
202	Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. Journal of Clinical Investigation, 2003, 112, 152-159.	3.9	87
203	Are patients with cirrhotic stage primary sclerosing cholangitis at risk for the development of hepatocellular cancer?. Journal of Hepatology, 1997, 27, 512-516.	1.8	86
204	TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. Journal of Hepatology, 2015, 62, 1156-1163.	1.8	85
205	Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: Implications for biliary tract carcinogenesis. Hepatology, 2004, 39, 732-738.	3.6	83
206	Model to estimate survival in ambulatory patients with hepatocellular carcinoma. Hepatology, 2012, 56, 614-621.	3.6	83
207	Performance of magnetic resonance elastography in primary sclerosing cholangitis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1184-1190.	1.4	83
208	Cholestasis Increases Tumor Necrosis Factor-Related Apoptotis-Inducing Ligand (TRAIL)-R2/DR5 Expression and Sensitizes the Liver to TRAIL-Mediated Cytotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 461-467.	1.3	82
209	Model for end-stage liver disease (MELD) exception for cholangiocarcinoma or biliary dysplasia. Liver Transplantation, 2006, 12, S95-S97.	1.3	82
210	TRAIL mediates liver injury by the innate immune system in the bile duct-ligated mouse. Hepatology, 2008, 47, 1317-1330.	3.6	82
211	Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology, 2016, 63, 1900-1913.	3.6	82
212	When should a liver mass suspected of being a hepatocellular carcinoma be biopsied?. Liver Transplantation, 2000, 6, 73-75.	1.3	81
213	SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. Journal of Hepatology, 2017, 67, 72-83.	1.8	81
214	Cyclosporine withdrawal for nephrotoxicity in liver transplant recipients does not result in sustained improvement in kidney function and causes cellular and ductopenic rejection. Hepatology, 1994, 19, 925-932.	3.6	80
215	A New Clinically Based Staging System for Perihilar Cholangiocarcinoma. American Journal of Gastroenterology, 2014, 109, 1881-1890.	0.2	80
216	Immunobiology of cholangiocarcinoma. JHEP Reports, 2019, 1, 297-311.	2.6	79

#	Article	IF	CITATIONS
217	Pilot study to assess patient outcomes following endoscopic application of photodynamic therapy for advanced cholangiocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2005, 20, 415-420.	1.4	78
218	Is TRAIL hepatotoxic?. Hepatology, 2001, 34, 3-6.	3.6	77
219	Hepatitis B virus enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity by increasing TRAIL-R1/death receptor 4 expression. Journal of Hepatology, 2003, 39, 414-420.	1.8	77
220	Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors: Figure 1 Genes and Development, 2012, 26, 305-311.	2.7	77
221	The bile acid–activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology, 2001, 120, 1810-1817.	0.6	76
222	Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. Journal of Hepatology, 2011, 54, 765-772.	1.8	76
223	CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 74, 1145-1154.	1.8	76
224	NF-κB Is Activated in Cholestasis and Functions to Reduce Liver Injury. American Journal of Pathology, 2001, 158, 967-975.	1.9	74
225	Triple modality testing by endoscopic retrograde cholangiopancreatography for the diagnosis of cholangiocarcinoma. Therapeutic Advances in Gastroenterology, 2015, 8, 56-65.	1.4	74
226	A Hippo and Fibroblast Growth Factor Receptor Autocrine Pathway in Cholangiocarcinoma. Journal of Biological Chemistry, 2016, 291, 8031-8047.	1.6	74
227	Vismodegib Suppresses TRAIL-mediated Liver Injury in a Mouse Model of Nonalcoholic Steatohepatitis. PLoS ONE, 2013, 8, e70599.	1.1	74
228	Bid Is Upstream of Lysosome-Mediated Caspase 2 Activation in Tumor Necrosis Factor α–Induced Hepatocyte Apoptosis. Gastroenterology, 2005, 129, 269-284.	0.6	72
229	Comparison of KRAS Mutation Analysis and FISH for Detecting Pancreatobiliary Tract Cancer in Cytology Specimens Collected During Endoscopic Retrograde Cholangiopancreatography. Journal of Molecular Diagnostics, 2010, 12, 780-786.	1.2	72
230	A role for miR-296 in the regulation of lipoapoptosis by targeting PUMA. Journal of Lipid Research, 2011, 52, 1517-1525.	2.0	72
231	Neoadjuvant Therapy and Liver Transplantation for Hilar Cholangiocarcinoma: Is Pretreatment Pathological Confirmation of Diagnosis Necessary?. Journal of the American College of Surgeons, 2012, 215, 31-38.	0.2	72
232	Perihilar Cholangiocarcinoma – Novel Benchmark Values for Surgical and Oncological Outcomes From 24 Expert Centers. Annals of Surgery, 2021, 274, 780-788.	2.1	72
233	Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Research, 2002, 62, 6500-5.	0.4	72
234	Treatment of Cholangiocarcinoma Complicating Primary Sclerosing Cholangitis: The Mayo Clinic Experience. American Journal of Gastroenterology, 2001, 96, 1164-1169.	0.2	71

#	Article	IF	CITATIONS
235	Correlating Routine Cytology, Quantitative Nuclear Morphometry by Digital Image Analysis, and Genetic Alterations by Fluorescence In Situ Hybridization to Assess the Sensitivity of Cytology for Detecting Pancreatobiliary Tract Malignancy. American Journal of Clinical Pathology, 2007, 128, 272-279.	0.4	70
236	Liver Transplantation for Perihilar Cholangiocarcinoma. Digestive Diseases, 2013, 31, 126-129.	0.8	70
237	YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity. Molecular Cancer Research, 2018, 16, 1556-1567.	1.5	70
238	Early hepatic stellate cell activation predicts severe hepatitis C recurrence after liver transplantation. Liver Transplantation, 2005, 11, 1207-1213.	1.3	68
239	Death Receptor 5 Internalization Is Required for Lysosomal Permeabilization by TRAIL in Malignant Liver Cell Lines. Gastroenterology, 2009, 136, 2365-2376.e7.	0.6	68
240	Biliary Tract Cancers in Olmsted County, Minnesota, 1976–2008. American Journal of Gastroenterology, 2012, 107, 1256-1262.	0.2	68
241	Analysis of the Effectiveness of the Ad26.COV2.S Adenoviral Vector Vaccine for Preventing COVID-19. JAMA Network Open, 2021, 4, e2132540.	2.8	68
242	Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma. Journal of Hepatology, 2014, 60, 599-605.	1.8	67
243	Transplantation for Cholangiocarcinoma: When and for Whom?. Surgical Oncology Clinics of North America, 2009, 18, 325-337.	0.6	66
244	Primary sclerosing cholangitis with equivocal cytology: Fluorescence in situ hybridization and serum CA 19â€9 predict risk of malignancy. Cancer Cytopathology, 2013, 121, 708-717.	1.4	66
245	Preliminary experience with liver transplantation in selected patients with unresectable hilar cholangiocarcinoma. Surgical Oncology Clinics of North America, 2002, 11, 909-921.	0.6	65
246	Therapeutic targeting of bile acids. American Journal of Physiology - Renal Physiology, 2015, 309, G209-G215.	1.6	63
247	Targeting cholangiocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1454-1460.	1.8	62
248	Diabetes Mellitus Heightens the Risk of Hepatocellular Carcinoma Except in Patients With Hepatitis C Cirrhosis. American Journal of Gastroenterology, 2016, 111, 1573-1580.	0.2	61
249	Liver transplantation for perihilar cholangiocarcinoma after aggressive neoadjuvant therapy: A new paradigm for liver and biliary malignancies?. Surgery, 2006, 140, 331-334.	1.0	60
250	cFLIP-L Inhibits p38 MAPK Activation. Journal of Biological Chemistry, 2003, 278, 26831-26837.	1.6	59
251	Cholangiocarcinoma: Is transplantation an option? For whom?. Journal of Hepatology, 2007, 47, 455-459.	1.8	59
252	Endoscopic ultrasound staging of cholangiocarcinoma. Current Opinion in Gastroenterology, 2012, 28, 244-252.	1.0	59

#	Article	IF	CITATIONS
253	Efflux of protons from acidic vesicles contributes to cytosolic acidification of hepatocytes during ATP depletion. Hepatology, 1991, 14, 626-633.	3.6	58
254	Death Receptor-Mediated Liver Injury. Seminars in Liver Disease, 2007, 27, 327-338.	1.8	58
255	Treatment Options for Hepatobiliary and Pancreatic Cancer. Mayo Clinic Proceedings, 2007, 82, 628-637.	1.4	58
256	A Bax-Mediated Mechanism for Obatoclax-Induced Apoptosis of Cholangiocarcinoma Cells. Cancer Research, 2010, 70, 1960-1969.	0.4	58
257	A smac mimetic reduces TNF Related Apoptosis Inducing Ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology, 2010, 52, 550-561.	3.6	57
258	A hedgehog survival pathway in â€~undead' lipotoxic hepatocytes. Journal of Hepatology, 2012, 57, 844-851.	1.8	57
259	Implications of CA19-9 elevation for survival, staging, and treatment sequencing in intrahepatic cholangiocarcinoma: A national cohort analysis. Journal of Surgical Oncology, 2016, 114, 475-482.	0.8	56
260	Circulating Extracellular Vesicles Carrying Sphingolipid Cargo for the Diagnosis and Dynamic Risk Profiling of Alcoholic Hepatitis. Hepatology, 2021, 73, 571-585.	3.6	56
261	A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. American Journal of Physiology - Renal Physiology, 2017, 312, G666-G680.	1.6	55
262	Plateletâ€derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation. Journal of Cellular Biochemistry, 2018, 119, 824-836.	1.2	55
263	<i>Cryptosporidium parvum</i> induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. American Journal of Physiology - Renal Physiology, 1999, 277, G599-G608.	1.6	54
264	Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. American Journal of Physiology - Renal Physiology, 2004, 287, G88-G95.	1.6	54
265	Constitutive androstane receptor (CAR) ligand, TCPOBOP, attenuates Fas-induced murine liver injury by altering Bcl-2 proteins. Hepatology, 2006, 44, 252-262.	3.6	54
266	Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome. Gastroenterology, 2004, 126, 849-858.	0.6	52
267	Biliary Multifocal Chromosomal Polysomy and Cholangiocarcinoma in Primary Sclerosing Cholangitis. American Journal of Gastroenterology, 2015, 110, 299-309.	0.2	51
268	Mitochondrial dysfunction during anoxia/reoxygenation injury of liver sinusoidal endothelial cells. Hepatology, 1994, 20, 177-185.	3.6	50
269	Mesothelin as a Potential Therapeutic Target in Human Cholangiocarcinoma. Journal of Cancer, 2010, 1, 141-149.	1.2	50
270	Emerging Technologies for the Diagnosis of Perihilar Cholangiocarcinoma. Seminars in Liver Disease, 2018, 38, 160-169.	1.8	50

#	Article	IF	CITATIONS
271	Ccne1 Overexpression Causes Chromosome Instability in Liver Cells and Liver Tumor Development in Mice. Gastroenterology, 2019, 157, 210-226.e12.	0.6	50
272	Animal models of cholangiocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 982-992.	1.8	50
273	Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. , 1996, 167, 434-442.		49
274	Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight, 2017, 2, .	2.3	49
275	Acidosis protects against lethal oxidative injury of liver sinusoidal endothelial cells. Hepatology, 1991, 14, 150-157.	3.6	48
276	Silencing of miR-370 in Human Cholangiocarcinoma by Allelic Loss and Interleukin-6 Induced Maternal to Paternal Epigenotype Switch. PLoS ONE, 2012, 7, e45606.	1.1	48
277	Platelet-derived Growth Factor Primes Cancer-associated Fibroblasts for Apoptosis. Journal of Biological Chemistry, 2014, 289, 22835-22849.	1.6	47
278	Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Protein-induced Lysosomal Translocation of Proapoptotic Effectors Is Mediated by Phosphofurin Acidic Cluster Sorting Protein-2 (PACS-2). Journal of Biological Chemistry, 2012, 287, 24427-24437.	1.6	46
279	Mixed lineage kinase 3 deficient mice are protected against the high fat high carbohydrate dietâ€induced steatohepatitis. Liver International, 2014, 34, 427-437.	1.9	46
280	Impact of country of birth on age at the time of diagnosis of hepatocellular carcinoma in the United States. Cancer, 2017, 123, 81-89.	2.0	46
281	A Novel Endoscopic Approach to Brachytherapy in the Management of Hilar Cholangiocarcinoma. American Journal of Gastroenterology, 2006, 101, 1792-1796.	0.2	45
282	HCC—subtypes, stratification and sorafenib. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 645-647.	8.2	45
283	Impact of surveillance for hepatocellular carcinoma on survival in patients with compensated cirrhosis. Hepatology, 2018, 68, 78-88.	3.6	45
284	YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget, 2018, 9, 5892-5905.	0.8	45
285	Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Current Opinion in Gastroenterology, 2015, 31, 264-268.	1.0	44
286	Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology, 2017, 65, 1249-1266.	3.6	44
287	Improved Performance of Serum Alpha-Fetoprotein for Hepatocellular Carcinoma Diagnosis in HCV Cirrhosis with Normal Alanine Transaminase. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1085-1092.	1.1	43
288	Is TRAIL hepatotoxic?. Hepatology, 2001, 34, 3-6.	3.6	43

#	Article	IF	CITATIONS
289	Apoptosis and the liver: A mechanism of disease, growth regulation, and carcinogenesis. Hepatology, 1999, 30, 811-815.	3.6	42
290	Hepatocyte transplantation in acute liver failure: A new therapeutic option for the next millennium?. Liver Transplantation, 2000, 6, 41-43.	1.3	42
291	Targeting <scp>PDGFR</scp> â€i² in Cholangiocarcinoma. Liver International, 2012, 32, 400-409.	1.9	41
292	The Spectrum of Reactive Cholangiocytes in Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 741-748.	3.6	41
293	Endoscopically inserted nasobiliary catheters for high dose-rate brachytherapy as part of neoadjuvant therapy for perihilar cholangiocarcinoma. Endoscopy, 2015, 47, 878-883.	1.0	40
294	Bile Acid Profiles in Primary Sclerosing Cholangitis and Their Ability to Predict Hepatic Decompensation. Hepatology, 2021, 74, 281-295.	3.6	40
295	Deregulated methionine adenosyltransferase α1, câ€Myc, and Maf proteins together promote cholangiocarcinoma growth in mice and humans‡. Hepatology, 2016, 64, 439-455.	3.6	39
296	Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Laboratory Investigation, 2017, 97, 1385-1396.	1.7	39
297	Piercing the armor of hepatobiliary cancer: Bcl-2 homology domain 3 (BH3) mimetics and cell death. Hepatology, 2007, 46, 906-911.	3.6	38
298	BH3-only protein mimetic obatoclax sensitizes cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2339-2347.	1.9	38
299	Ruthenium red delays the onset of cell death during oxidative stress of rat hepatocytes. Gastroenterology, 1992, 102, 1030-1038.	0.6	37
300	Advances in the diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver Transplantation, 2006, 12, S15-S19.	1.3	37
301	cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. American Journal of Physiology - Renal Physiology, 2007, 292, G1337-G1346.	1.6	37
302	Mcl-1 Degradation during Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2009, 284, 30039-30048.	1.6	37
303	Polo-like kinase 2 is a mediator of hedgehog survival signaling in cholangiocarcinoma. Hepatology, 2013, 58, 1362-1374.	3.6	37
304	Prognostic Significance of the Histologic Response of Perihilar Cholangiocarcinoma to Preoperative Neoadjuvant Chemoradiation in Liver Explants. American Journal of Surgical Pathology, 2016, 40, 510-518.	2.1	37
305	YAP and the Hippo pathway in cholangiocarcinoma. Journal of Gastroenterology, 2019, 54, 485-491.	2.3	37
306	Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Experimental Cell Research, 2011, 317, 107-116.	1.2	36

#	Article	IF	CITATIONS
307	Molecular Pathogenesis of Cholangiocarcinoma. Digestive Diseases, 2014, 32, 564-569.	0.8	35
308	Current Diagnostic and Management Options in Perihilar Cholangiocarcinoma. Digestion, 2014, 89, 216-224.	1.2	35
309	Endoscopic Ultrasound/Fine Needle Aspiration Is Effective for Lymph Node Staging in Patients With Cholangiocarcinoma. Hepatology, 2020, 72, 940-948.	3.6	35
310	Liver Transplantation for Peri-hilar Cholangiocarcinoma. Journal of Gastrointestinal Surgery, 2020, 24, 2679-2685.	0.9	35
311	A spotlight on cholangiocarcinoma. Gastroenterology, 2003, 125, 1536-1538.	0.6	34
312	Emerging drugs for hepatocellular carcinoma. Expert Opinion on Emerging Drugs, 2006, 11, 469-487.	1.0	34
313	Decreasing Mitochondrial Fission Prevents Cholestatic Liver Injury. Journal of Biological Chemistry, 2014, 289, 34074-34088.	1.6	34
314	Ballooned hepatocytes, undead cells, sonic hedgehog, and Vitamin E: Therapeutic implications for nonalcoholic steatohepatitis. Hepatology, 2015, 61, 15-17.	3.6	34
315	TRAIL deletion prevents liver inflammation but not adipose tissue inflammation during murine dietâ€induced obesity. Hepatology Communications, 2017, 1, 648-662.	2.0	33
316	Living Donor Liver Transplantation for Perihilar Cholangiocarcinoma: Outcomes and Complications. Journal of the American College of Surgeons, 2020, 231, 98-110.	0.2	33
317	Metformin does not improve survival in patients with hepatocellular carcinoma. World Journal of Gastroenterology, 2014, 20, 15750.	1.4	33
318	Cholestatic hepatocellular injury: what do we know and how should we proceed. Journal of Hepatology, 2005, 42, 297-300.	1.8	32
319	"Will all liver transplantation patients eventually die from cancer?â€: Journal of Hepatology, 2006, 44, 13-18.	1.8	32
320	Treatment of hepatocellular carcinoma. Clinical Gastroenterology and Hepatology, 2003, 1, 10-18.	2.4	31
321	Comparison of Clinical Features and Outcomes Between Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma in the United States. Hepatology, 2021, 74, 2622-2632.	3.6	31
322	Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World Journal of Gastroenterology, 2007, 13, 851.	1.4	31
323	Ursodeoxycholic acid cytoprotection: Dancing with death receptors and survival pathways. Hepatology, 2002, 35, 971-973.	3.6	30
324	Cholangioscopy Biopsies Improve Detection of Cholangiocarcinoma When Combined with Cytology and FISH, but Not in Patients with PSC. Digestive Diseases and Sciences, 2020, 65, 1471-1478.	1.1	30

#	Article	IF	CITATIONS
325	Changes in Liver Stiffness, Measured by Magnetic Resonance Elastography, Associated With Hepatic Decompensation in Patients With Primary Sclerosing Cholangitis. Clinical Gastroenterology and Hepatology, 2020, 18, 1576-1583.e1.	2.4	30
326	Lack of gp130 expression results in more bacterial infection and higher mortality during chronic cholestasis in mice. Hepatology, 2005, 42, 1082-1090.	3.6	29
327	Recent Trends in the Epidemiology of Hepatocellular Carcinoma in Olmsted County, Minnesota. Journal of Clinical Gastroenterology, 2017, 51, 742-748.	1.1	29
328	Hepatocellular carcinoma in the setting of liver transplantation. Liver Transplantation, 2006, 12, 1028-1036.	1.3	28
329	Early cellular rejection after orthotopic liver transplantation correlates with low concentrations of FK506 in hepatic tissue. Hepatology, 1995, 21, 70-76.	3.6	27
330	Proteasome inhibition attenuates hepatic injury in the bile duct-ligated mouse. American Journal of Physiology - Renal Physiology, 2006, 291, G709-G716.	1.6	27
331	High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*. Journal of Biological Chemistry, 2011, 286, 35823-35833.	1.6	27
332	A Positive TGF-β/c-KIT Feedback Loop Drives Tumor Progression in Advanced Primary Liver Cancer. Neoplasia, 2016, 18, 371-386.	2.3	27
333	Hedgehog Inhibition Promotes a Switch from Type II to Type I Cell Death Receptor Signaling in Cancer Cells. PLoS ONE, 2011, 6, e18330.	1.1	27
334	Apoptosis in liver transplantation: A mechanism contributing to immune modulation, preservation injury, neoplasia, and viral disease. Liver Transplantation, 1998, 4, 42-50.	1.9	26
335	Epigenetics in the Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Seminars in Liver Disease, 2017, 37, 159-174.	1.8	26
336	Matrix metalloproteinase inhibitor, CTSâ€1027, attenuates liver injury and fibrosis in the bile ductâ€ligated mouse. Hepatology Research, 2009, 39, 805-813.	1.8	25
337	Excellent quality of life after liver transplantation for patients with perihilar cholangiocarcinoma who have undergone neoadjuvant chemoradiation. Liver Transplantation, 2013, 19, 521-528.	1.3	25
338	Cellular Inhibitor of Apoptosis (cIAP)-Mediated Ubiquitination of Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) Negatively Regulates Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Cytotoxicity. PLoS ONE, 2014, 9, e92124.	1.1	25
339	Early Cholangiocarcinoma Detection With Magnetic Resonance Imaging Versus Ultrasound in Primary Sclerosing Cholangitis. Hepatology, 2021, 73, 1868-1881.	3.6	25
340	Kupffer cell-derived cyclooxygenase-2 regulates hepatocyte Bcl-2 expression in choledocho-venous fistula rats. American Journal of Physiology - Renal Physiology, 2001, 280, G805-G811.	1.6	24
341	Model for end-stage liver disease (MELD) exception for bacterial cholangitis. Liver Transplantation, 2006, 12, S91-S92.	1.3	24
342	Caspase Inhibitors for the Treatment of Hepatitis C. Clinics in Liver Disease, 2009, 13, 467-475.	1.0	24

#	Article	IF	CITATIONS
343	Combination of gemcitabine and cisplatin for biliary tract cancer: A platform to build on. Journal of Hepatology, 2011, 54, 577-578.	1.8	24
344	Awareness of Tract Seeding With Endoscopic Ultrasound Tissue Acquisition in Perihilar Cholangiocarcinoma. American Journal of Gastroenterology, 2015, 110, 200.	0.2	24
345	Imatinib mesylate induces apoptosis in human cholangiocarcinoma cells. Liver International, 2004, 24, 687-695.	1.9	22
346	Tumor-specific marker genes for intrahepatic cholangiocarcinoma: Utility and mechanistic insight. Journal of Hepatology, 2008, 49, 160-162.	1.8	22
347	Positron emission tomography scan for a hepatic mass. Hepatology, 2010, 52, 2186-2191.	3.6	22
348	The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. Journal of Biological Chemistry, 2019, 294, 18698-18713.	1.6	22
349	Targeted Apoptosis of Ductular Reactive Cells Reduces Hepatic Fibrosis in a Mouse Model of Cholestasis. Hepatology, 2020, 72, 1013-1028.	3.6	22
350	An update on primary sclerosing cholangitis epidemiology, outcomes and quantification of alkaline phosphatase variability in a population-based cohort. Journal of Gastroenterology, 2020, 55, 523-532.	2.3	22
351	A pilot study of Pan-FGFR inhibitor ponatinib in patients with FGFR-altered advanced cholangiocarcinoma. Investigational New Drugs, 2022, 40, 134-141.	1.2	21
352	Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget, 2017, 8, 50542-50556.	0.8	21
353	Diagnosis, staging, and treatment of cholangiocarcinoma. Current Treatment Options in Gastroenterology, 2003, 6, 105-112.	0.3	20
354	Diet Mimicking "Fast Food―Causes Structural Changes to the Retina Relevant to Age-Related Macular Degeneration. Current Eye Research, 2020, 45, 726-732.	0.7	20
355	An apoptosis biomarker goes to the HCV clinic. Hepatology, 2004, 40, 1044-1046.	3.6	19
356	Liver transplantation for neuroendocrine tumors: Progress and uncertainty. Liver Transplantation, 2004, 10, 712-713.	1.3	19
357	IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes. Journal of Cell Biology, 2015, 210, 257-272.	2.3	19
358	Surveillance for cholangiocarcinoma in patients with primary sclerosing cholangitis: Effective and justified?. Clinical Liver Disease, 2016, 8, 43-47.	1.0	19
359	Activated cholangiocytes release macrophage-polarizing extracellular vesicles bearing the DAMP S100A11. American Journal of Physiology - Cell Physiology, 2019, 317, C788-C799.	2.1	19
360	Efflux of protons from acidic vesicles contributes to cytosolic acidification of hepatocytes during ATP depletion. Hepatology, 1991, 14, 626-633.	3.6	19

#	Article	IF	CITATIONS
361	Inference from longitudinal laboratory tests characterizes temporal evolution of COVID-19-associated coagulopathy (CAC). ELife, 2020, 9, .	2.8	19
362	Acute Alcoholic Hepatitis. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2017, 1, 37-48.	1.2	18
363	Biliary tract cancer patient-derived xenografts: Surgeon impact on individualized medicine. JHEP Reports, 2020, 2, 100068.	2.6	18
364	Hepatocyte apoptosis is tumor promoting in murine nonalcoholic steatohepatitis. Cell Death and Disease, 2020, 11, 80.	2.7	18
365	Targeting IL-6 in Cholangiocarcinoma Therapy. American Journal of Gastroenterology, 2007, 102, 2171-2172.	0.2	17
366	Complete lysosomal disruption: A route to necrosis, not to the inflammasome. Cell Cycle, 2013, 12, 1995-1995.	1.3	17
367	Advances in cholangiocarcinoma research: report from the third Cholangiocarcinoma Foundation Annual Conference. Journal of Gastrointestinal Oncology, 2016, 7, 819-827.	0.6	17
368	Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. Journal of Hepatology, 2018, 68, 1228-1238.	1.8	17
369	Selected Patients with Unresectable Perihilar Cholangiocarcinoma (pCCA) Derive Long-Term Benefit from Liver Transplantation. Cancers, 2020, 12, 3157.	1.7	17
370	The Hippo Pathway and YAP Signaling: Emerging Concepts in Regulation, Signaling, and Experimental Targeting Strategies With Implications for Hepatobiliary Malignancies. Gene Expression, 2020, 20, 67-74.	0.5	17
371	Liver Matrix in Benign and Malignant Biliary Tract Disease. Seminars in Liver Disease, 2020, 40, 282-297.	1.8	17
372	The liver's dance with death: Two Bcl-2 guardian proteins from the abyss. Hepatology, 2009, 50, 1009-1013.	3.6	16
373	Degradation of cIAPs contributes to hepatocyte lipoapoptosis. American Journal of Physiology - Renal Physiology, 2013, 305, G611-G619.	1.6	16
374	Apoptosis and the liver: Relevance for the hepato-biliary-pancreatic surgeon. Journal of Hepato-Biliary-Pancreatic Surgery, 1998, 5, 409-415.	2.0	15
375	Cheating death in the liver. Nature Medicine, 2004, 10, 587-588.	15.2	15
376	Building a staircase to precision medicine for biliary tract cancer. Nature Genetics, 2015, 47, 967-968.	9.4	15
377	Is ursodeoxycholate an antiapoptotic drug?. Hepatology, 1998, 28, 1721-1723.	3.6	14
378	Emerging pharmacologic therapies for primary sclerosing cholangitis. Current Opinion in Gastroenterology, 2017, 33, 149-157.	1.0	14

#	Article	IF	CITATIONS
379	Overexpression of Mcl-1 Attenuates Liver Injury and Fibrosis in the Bile Duct–Ligated Mouse. Digestive Diseases and Sciences, 2009, 54, 1908-1917.	1.1	12
380	Outcome of Transplant-fallout Patients With Unresectable Cholangiocarcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2016, 39, 271-275.	0.6	12
381	Lack of metabolic effects of cholecystokinin on hepatocytes. Hepatology, 1990, 12, 301-305.	3.6	11
382	A novel, minimally invasive technique for management of peristomal varices. Hepatology, 2016, 63, 1398-1400.	3.6	11
383	The Emerging Role of Macrophages in Chronic Cholangiopathies Featuring Biliary Fibrosis: An Attractive Therapeutic Target for Orphan Diseases. Frontiers in Medicine, 2020, 7, 115.	1.2	11
384	Highâ€Resolution Exposomics and Metabolomics Reveals Specific Associations in Cholestatic Liver Diseases. Hepatology Communications, 2022, 6, 965-979.	2.0	11
385	Cell-Free Tumor DNA Dominant Clone Allele Frequency Is Associated With Poor Outcomes in Advanced Biliary Cancers Treated With Platinum-Based Chemotherapy. JCO Precision Oncology, 2022, , .	1.5	11
386	Impact of trimodality sampling on detection of malignant biliary strictures compared with patients with primary sclerosing cholangitis. Gastrointestinal Endoscopy, 2022, 95, 884-892.	0.5	10
387	Humoral Responses After SARS-CoV-2 mRNA Vaccination and Breakthrough Infection in Cancer Patients. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2022, 6, 120-125.	1.2	10
388	Potential Role of Inflammation-Promoting Biliary Microbiome in Primary Sclerosing Cholangitis and Cholangiocarcinoma. Cancers, 2022, 14, 2120.	1.7	10
389	Liver transplantation for intrahepatic cholangiocarcinoma – Authors' reply. Lancet, The, 2014, 384, 1182-1183.	6.3	9
390	Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death and Disease, 2018, 8, e2535-e2535.	2.7	9
391	Nonalcoholic Steatohepatitis Promoting Kinases. Seminars in Liver Disease, 2020, 40, 346-357.	1.8	9
392	Phenotypic, Transcriptional, and Functional Analysis of Liver Mesenchymal Stromal Cells and Their Immunomodulatory Properties. Liver Transplantation, 2020, 26, 549-563.	1.3	9
393	A new TRAIL to therapy of hepatocellular carcinoma: Blocking the proteasome. Hepatology, 2005, 42, 527-529.	3.6	8
394	Proapoptotic signaling induced by deletion of receptor-interacting kinase 1 and TNF receptor-associated factor 2 results in liver carcinogenesis. Hepatology, 2017, 66, 983-985.	3.6	8
395	Epidemiology, risk factors, and outcomes of infections in patients undergoing liver transplantation for hilar cholangiocarcinoma. Clinical Transplantation, 2017, 31, e13023.	0.8	8
396	The Two Faces of Relaxin in Cancer: Antitumor or Protumor?. Hepatology, 2020, 71, 1117-1119.	3.6	8

#	Article	IF	CITATIONS
397	DNA Methylation Markers for Detection of Cholangiocarcinoma: Discovery, Validation, and Clinical Testing in Biliary Brushings and Plasma. Hepatology Communications, 2021, 5, 1448-1459.	2.0	8
398	Targeting Tumor Stroma: Exploiting Apoptotic Priming. Oncotarget, 2012, 3, 1501-1502.	0.8	8
399	Cholangiocarcinoma: what are the most valuable therapeutic targets – cancer-associated fibroblasts, immune cells, or beyond T cells?. Expert Opinion on Therapeutic Targets, 2021, 25, 835-845.	1.5	8
400	Localized hepatocellular carcinoma: Therapeutic options. Current Gastroenterology Reports, 2000, 2, 72-81.	1.1	7
401	Liver transplantation for non-hepatocellular carcinoma malignancies. Liver Transplantation, 2010, 16, S22-S25.	1.3	7
402	Noxa mediates hepatic stellate cell apoptosis by proteasome inhibition. Hepatology Research, 2010, 40, 701-710.	1.8	7
403	Portal vein encasement predicts neoadjuvant therapy response in liver transplantation for perihilar cholangiocarcinoma protocol. Transplant International, 2015, 28, 1383-1391.	0.8	7
404	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptor Deficiency Promotes the Ductular Reaction, Macrophage Accumulation, and Hepatic Fibrosis in the Abcb4 Mouse. American Journal of Pathology, 2020, 190, 1284-1297.	1.9	7
405	Tumors of the Bile Ducts, Gallbladder, and Ampulla. , 2010, , 1171-1184.e3.		7
406	Primary Sclerosing Cholangitis. Clinics in Liver Disease, 2017, 21, 725-737.	1.0	7
407	Keratin, fas, and cryptogenic liver failure. Liver Transplantation, 2002, 8, 1195-1197.	1.3	6
408	Transforming the practice of medicine through team science. Health Research Policy and Systems, 2020, 18, 104.	1.1	6
409	XIAP Knockdown in Alcohol-Associated Liver Disease Models Exhibits Divergent in vitro and in vivo Phenotypes Owing to a Potential Zonal Inhibitory Role of SMAC. Frontiers in Physiology, 2021, 12, 664222.	1.3	6
410	Cyclosporine withdrawal for nephrotoxicity in liver transplant recipients does not result in sustained improvement in kidney function and causes cellular and ductopenic rejection. Hepatology, 1994, 19, 925-932.	3.6	6
411	Cholangiocarcinoma: preventing invasion as anti-cancer strategy. Journal of Hepatology, 2003, 38, 671-673.	1.8	5
412	Authors' response to the letter: Liver resection for patients with hepatocellular carcinoma and macrovascular invasion, multiple tumours or portal hypertension by Zhong <i>et al</i> . Gut, 2015, 64, 522-522.	6.1	5
413	Reply. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 265-266.	2.3	5
414	Liver capsule: Cholangiocarcinoma (CCA). Hepatology, 2016, 63, 1356-1356.	3.6	5

#	Article	IF	CITATIONS
415	Anti-GP2 IgA: a biomarker for disease severity and/or cholangiocarcinoma in primary sclerosing cholangitis?. Gut, 2017, 66, 4-5.	6.1	5
416	Noncompetitive Allosteric Antagonism of Death Receptor 5 by a Synthetic Affibody Ligand. Biochemistry, 2020, 59, 3856-3868.	1.2	5
417	Mistiming Death: Modeling the Time-Domain Variability of Tumor Apoptosis and Implications for Molecular Imaging of Cell Death. Molecular Imaging and Biology, 2020, 22, 1310-1323.	1.3	5
418	Yes, hepatocellular cancer does occur in primary biliary cirrhosis. Liver Transplantation, 2002, 8, 570-571.	1.3	4
419	Liver transplantation for cholangiocarcinoma. Liver Transplantation, 2015, 21, S32-S33.	1.3	4
420	miRNA in Liver Pathobiology, Diagnosis, and Therapy. Seminars in Liver Disease, 2015, 35, 001-002.	1.8	4
421	Knockout of sulfatase 2 is associated with decreased steatohepatitis and fibrosis in a mouse model of nonalcoholic fatty liver disease. American Journal of Physiology - Renal Physiology, 2020, 319, G333-G344.	1.6	4
422	Direct-Acting Antiviral Therapy in Liver Transplant Patients With Hepatocellular Carcinoma and Hepatitis C. Transplantation Direct, 2021, 7, e635.	0.8	4
423	Treatment endpoints for advanced cholangiocarcinoma. Nature Reviews Gastroenterology & Hepatology, 2004, 1, 4-5.	1.7	3
424	The emergence of a new discipline, hepatobiliary oncology. Hepatology, 2008, 47, 365-366.	3.6	3
425	Paving the TRAIL to antiâ \in fibrotic therapy. Hepatology, 2016, 64, 29-31.	3.6	3
426	Hedgehog Signaling Modulates Interleukinâ€33â€Dependent Extrahepatic Bile Duct Cell Proliferation in Mice. Hepatology Communications, 2019, 3, 277-292.	2.0	3
427	Long-term outcomes with obeticholic acid in primary biliary cholangitis: reassuring, but still an itch we need to scratch. The Lancet Gastroenterology and Hepatology, 2019, 4, 417-418.	3.7	3
428	The Difference a Decade Makes. Hepatology, 2021, 73, 1-3.	3.6	3
429	Predictors of Jaundice Resolution and Survival After Endoscopic Treatment of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 809-820.	2.0	3
430	Chemoembolization as a bridge to transplantation for hepatocellular carcinoma. Liver Transplantation, 2001, 7, 998.	1.3	2
431	Dying in Fas traffic. Hepatology, 2003, 32, 439-440.	3.6	2
432	Liver graft protection by antiapoptotic drugs: A step further. Liver Transplantation, 2007, 13, 318-320.	1.3	2

#	Article	IF	CITATIONS
433	Addressing unmet clinical needs: FISHing for bile duct cancer. Cancer Cytopathology, 2014, 122, 789-790.	1.4	2
434	PPAR agonists for primary biliary cholangitis. The Lancet Gastroenterology and Hepatology, 2017, 2, 693-694.	3.7	2
435	Does cirrhosis associated with well controlled viral hepatitis confer a risk for extrahepatic cancer?. Hepatology, 2018, 68, 1217-1219.	3.6	2
436	Fatty liver progression and carcinogenesis: Beware of pathogenic TÂcells. Med, 2021, 2, 453-455.	2.2	2
437	FGFR Inhibitor Toxicity and Efficacy in Cholangiocarcinoma: Multicenter Single-Institution Cohort Experience. JCO Precision Oncology, 2021, 5, 1228-1240.	1.5	2
438	The Death Receptor Pathway. , 2009, , 119-150.		2
439	DNA methylation profile of liver tissue in end-stage cholestatic liver disease. Epigenomics, 2022, 14, 481-497.	1.0	2
440	Impact of FGFR2 gene fusions on survival of patients with intrahepatic cholangiocarcinoma following curative intent resection. Hpb, 2022, , .	0.1	2
441	Targeted use of siRNA in animal models of hepatic damage: an innovative therapy for acute liver failure. Journal of Hepatology, 2003, 39, 883-885.	1.8	1
442	Current status of liver transplantation for hilar cholangiocarcinoma. Current Opinion in Organ Transplantation, 2007, 12, 215-219.	0.8	1
443	Open access journals: Why are we not there yet? (!). Hepatology, 2010, 52, 1869-1871.	3.6	1
444	Presentation of the Julius M. Friedenwald Medal to Nicholas F. LaRusso, MD. Gastroenterology, 2014, 146, 1813-1817.	0.6	1
445	Acetaminophen knocks on death's door and receptor interacting protein 1 kinase answers. Hepatology, 2015, 62, 1664-1666.	3.6	1
446	Inheriting a Jewel: A Thrilling Challenge. Seminars in Liver Disease, 2016, 36, 003-004.	1.8	1
447	Fibroblast Growth Factor Receptor Inhibition for Cholangiocarcinoma: Looking Through a Door Halfâ€Opened. Hepatology, 2018, 68, 2428-2430.	3.6	1
448	Precarious Windows of Opportunity: Adverse Waitâ€List Dropout for Cholangiocarcinoma Versus Hepatocellular Carcinoma Patients. Liver Transplantation, 2020, 26, 1083-1084.	1.3	1
449	The Metabolic Sensor Adenosine Monophosphate–Activated Protein Kinase Regulates Apoptosis in Nonalcoholic Steatohepatitis. Hepatology, 2020, 72, 1139-1141.	3.6	1
450	REPLY:. Hepatology, 2021, 74, 535-536.	3.6	1

0

#	Article	IF	CITATIONS
451	Hepatocyte Lethal and Nonlethal Lipotoxic Injury. , 2017, , 105-117.		1
452	Liver Cell Death. Molecular Pathology Library, 2010, , 373-387.	0.1	1
453	Liver transplantation for cholangiocarcinoma and other neoplastic diseases. , 2012, , 1712-1721.e1.		1
454	Comparative Performance of Quantitative and Qualitative Magnetic Resonance Imaging Metrics in Primary Sclerosing Cholangitis. , 2022, 1, 287-295.		1
455	The Fas/FasL Signaling Pathway. , 2005, , 129-138.		0
456	Reply: Diagnostic Utility of Chromosome 17 and p16 Abnormalities in Fluorescence In Situ Hybridization Tests in Primary Sclerosing Cholangitis. Hepatology, 2010, 52, 394-395.	3.6	0
457	Regulation of Cell Death in the Gastrointestinal Tract. , 0, , 231-239.		0
458	Vigilancia del colangiocarcinoma en pacientes con colangitis esclerosante primaria: ¿es efectiva y está justificada?. Clinical Liver Disease, 2016, 8, S20-S24.	1.0	0
459	Cholangiocarcinoma: Disease Pathogenesis and New Treatment Paradigms. , 2017, , 219-228.		0
460	REPLY:. Hepatology, 2020, 72, 362-363.	3.6	0
461	Reply. Hepatology, 2020, 72, 364-365.	3.6	0
462	MEK Inhibition. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1153-1154.	2.3	0
463	Presentation of the Julius M. Friedenwald Medal to Michael Camilleri, MD, AGAF. Gastroenterology, 2021, 160, 2563-2571.	0.6	0
464	Presenting the new incoming editorial team for hepatology: Team members and perspectives. Hepatology, 2022, 75, 3-4.	3.6	0
465	The Death Receptor Family and the Extrinsic Pathway. , 2003, , 67-84.		0
466	The death receptor TRAIL in cancer cell apoptosis. Annals of Cancer Research and Therapy, 2005, 13, 1-10.	0.1	0
467	Fas/FasL. , 2010, , 179-188.		0

Genetics and Epidemiology of Cholangiocarcinoma. , 2010, , 75-99.

#	Article	IF	CITATIONS
469	Liver transplantation for nonhepatocellular malignant disease. , 2017, , 1791-1800.e2.		Ο
470	Surgical Treatment of Primary Sclerosing Cholangitis. , 2019, , 1378-1385.		0
471	Burning, but Not Dying: the Failure of Pyroptotic Cell Death in Hepatocytes. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 974-976.	2.3	Ο
472	Drivers and breaks in the cholangiocarcinoma immune microenvironment. Hepatobiliary Surgery and Nutrition, 2022, 11, 320-323.	0.7	0
473	What is Hepatology looking for version 2.0?. Hepatology, 2023, 77, 707-708.	3.6	Ο