
Ethan K Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689416/publications.pdf Version: 2024-02-01

ETHAN K SCOTT

#	Article	IF	CITATIONS
1	Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Nature Communications, 2022, 13, 895.	12.8	17
2	Optical tweezers across scales in cell biology. Trends in Cell Biology, 2022, 32, 932-946.	7.9	9
3	Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system. Current Biology, 2021, 31, 1977-1987.e4.	3.9	13
4	The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Current Biology, 2021, 31, R741-R762.	3.9	91
5	Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish. Frontiers in Neural Circuits, 2021, 15, 748535.	2.8	7
6	Brain states behind exploring and hunting revealed. Nature, 2020, 577, 175-176.	27.8	0
7	Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome. BMC Biology, 2020, 18, 125.	3.8	92
8	Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proceedings of the United States of America, 2020, 117, 26822-26832.	7.1	41
9	Sound generation in zebrafish with Bio-Opto-Acoustics. Nature Communications, 2020, 11, 6120.	12.8	17
10	Optical Tweezers Exploring Neuroscience. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602797.	4.1	20
11	Deep conservation of the enhancer regulatory code in animals. Science, 2020, 370, .	12.6	89
12	Visual escape in larval zebrafish: stimuli, circuits, and behavior. , 2020, , 49-71.		5
13	Brain-Wide Mapping of Water Flow Perception in Zebrafish. Journal of Neuroscience, 2020, 40, 4130-4144.	3.6	40
14	Calcium Imaging and the Curse of Negativity. Frontiers in Neural Circuits, 2020, 14, 607391.	2.8	21
15	Optical trapping <i>in vivo</i> : theory, practice, and applications. Nanophotonics, 2019, 8, 1023-1040.	6.0	91
16	STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones. Journal of Neuroscience, 2019, 39, 5095-5114.	3.6	39
17	Integrative whole-brain neuroscience in larval zebrafish. Current Opinion in Neurobiology, 2018, 50, 136-145.	4.2	95
18	Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain. Current Biology, 2018, 28, 3711-3722.e3.	3.9	85

ETHAN K SCOTT

#	Article	IF	CITATIONS
19	Luminance Changes Drive Directional Startle through a Thalamic Pathway. Neuron, 2018, 99, 293-301.e4.	8.1	71
20	Diffuse lightâ€sheet microscopy for stripeâ€free calcium imaging of neural populations. Journal of Biophotonics, 2018, 11, e201800088.	2.3	42
21	A profile of auditoryâ€responsive neurons in the larval zebrafish brain. Journal of Comparative Neurology, 2017, 525, 3031-3043.	1.6	40
22	Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nature Communications, 2017, 8, 630.	12.8	82
23	Spontaneous Activity in the Zebrafish Tectum Reorganizes over Development and Is Influenced by Visual Experience. Current Biology, 2017, 27, 2407-2419.e4.	3.9	72
24	Hypothalamic Projections to the Optic Tectum in Larval Zebrafish. Frontiers in Neuroanatomy, 2017, 11, 135.	1.7	30
25	Characterisation of sensitivity and orientation tuning for visually responsive ensembles in the zebrafish tectum. Scientific Reports, 2016, 6, 34887.	3.3	24
26	Limitations of Neural Map Topography for Decoding Spatial Information. Journal of Neuroscience, 2016, 36, 5385-5396.	3.6	21
27	Functional Profiles of Visual-, Auditory-, and Water Flow-Responsive Neurons in the Zebrafish Tectum. Current Biology, 2016, 26, 743-754.	3.9	67
28	Quantitative Analysis of Axonal Branch Dynamics in the Developing Nervous System. PLoS Computational Biology, 2016, 12, e1004813.	3.2	5
29	Topographic wiring of the retinotectal connection in zebrafish. Developmental Neurobiology, 2015, 75, 542-556.	3.0	36
30	The influence of activity on axon pathfinding in the optic tectum. Developmental Neurobiology, 2015, 75, 608-620.	3.0	14
31	Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics. Scientific Reports, 2015, 5, 11501.	3.3	29
32	The dynamics of growth cone morphology. BMC Biology, 2015, 13, 10.	3.8	28
33	Neuronal activity biases axon selection for myelination in vivo. Nature Neuroscience, 2015, 18, 683-689.	14.8	361
34	Computational Modeling of Scattering of a Focused Beam in Zebrafish Brain Tissue. , 2015, , .		0
35	A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. Journal of Comparative Neurology, 2013, 521, 1409-1429.	1.6	22
36	Cerebellar Output in Zebrafish: An Analysis of Spatial Patterns and Topography in Eurydendroid Cell Projections. Frontiers in Neural Circuits, 2013, 7, 53.	2.8	67

Ετήαν Κ Scott

#	Article	IF	CITATIONS
37	Zebrafish as an appealing model for optogenetic studies. Progress in Brain Research, 2012, 196, 145-162.	1.4	33
38	Transient Knockdown of Tyrosine Hydroxylase during Development Has Persistent Effects on Behaviour in Adult Zebrafish (Danio rerio). PLoS ONE, 2012, 7, e42482.	2.5	19
39	Fin-Tail Coordination during Escape and Predatory Behavior in Larval Zebrafish. PLoS ONE, 2012, 7, e32295.	2.5	44
40	Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish?. Molecular Psychiatry, 2011, 16, 7-16.	7.9	59
41	Focusing on optic tectum circuitry through the lens of genetics. BMC Biology, 2010, 8, 126.	3.8	119
42	Filtering of Visual Information in the Tectum by an Identified Neural Circuit. Science, 2010, 330, 669-673.	12.6	223
43	Proneural gene-linked neurogenesis in zebrafish cerebellum. Developmental Biology, 2010, 343, 1-17.	2.0	139
44	The cellular architecture of the larval zebrafish tectum, as revealed by Gal4 enhancer trap lines. Frontiers in Neural Circuits, 2009, 3, 13.	2.8	137
45	Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight. Current Opinion in Neurobiology, 2009, 19, 553-560.	4.2	96
46	A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Molecular Genetics and Genomics, 2009, 281, 551-563.	2.1	14
47	Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature, 2009, 461, 407-410.	27.8	387
48	The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. Journal of Neurochemistry, 2009, 110, 441-456.	3.9	60
49	Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor. Neuron, 2007, 54, 535-545.	8.1	310
50	Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nature Methods, 2007, 4, 323-326.	19.0	375
51	Dendritic development of Drosophila high order visual system neurons is independent of sensory experience. BMC Neuroscience, 2003, 4, 14.	1.9	33
52	A mosaic genetic screen for genes necessary forDrosophilamushroom body neuronal morphogenesis. Development (Cambridge), 2003, 130, 1203-1213.	2.5	92
53	Small GTPase Cdc42 Is Required for Multiple Aspects of Dendritic Morphogenesis. Journal of Neuroscience, 2003, 23, 3118-3123.	3.6	124
54	Structure of the vertical and horizontal system neurons of the lobula plate inDrosophila. Journal of Comparative Neurology, 2002, 454, 470-481.	1.6	86

#	Article	IF	CITATIONS
55	How do dendrites take their shape?. Nature Neuroscience, 2001, 4, 359-365.	14.8	267
56	enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation. Current Biology, 2001, 11, 99-104.	3.9	67